Aufgaben:Aufgabe 3.12: Pfadgewichtsfunktion: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 59: Zeile 59:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  [[Datei:P_ID2703__KC_A_3_12a.png|right|frame|Modifiziertes Zustandsübergangsdiagramm]] Der Zustand $S_0$ muss entsprechend nebenstehender Grafik in einen Startzustand $S_0$ und einen Endzustand $S_0'$ aufgespalten werden. Der Grund hierfür ist, dass für die folgende Berechnung der Pfadgewichtsfunktion $T(X, \, U)$ alle Übergänge von $S_0$ nach $S_0$ ausgeschlossen werden müssen.
+
[[Datei:P_ID2703__KC_A_3_12a.png|right|frame|Zustandsübergangsdiagramm nach Modifikationen]]  
 +
'''(1)'''&nbsp; Aus der nebenstehenden Grafik erkennt man, dass die <u>Lösungsvorschläge 1, 3, 4 und 5</u> richtig sind:
 +
*Der Zustand $S_0$ muss in einen Startzustand $S_0$ und einen Endzustand ${S_0}'$ aufgespalten werden.  
 +
*Der Grund hierfür ist, dass für die folgende Berechnung der Pfadgewichtsfunktion $T(X, \, U)$ alle Übergänge von $S_0$ nach $S_0$ ausgeschlossen werden müssen.
 +
*Jedes Codesymbol $x &#8712; \{0, \, 1\}$ wird durch $X^x$ dargestellt, wobei $X$ eine Dummy&ndash;Variable hinsichtlich der Ausgangssequenz ist: $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.$ Daraus folgt weiter $(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2$.
 +
*Bei einem blauen Übergang im ursprünglichen Diagramm &ndash; dies steht für $u_i = 1$ &ndash; ist im modifizierten Diagramm der Faktor $U$ hinzuzufügen.  
  
Jedes Codesymbol $x &#8712; \{0, \, 1\}$ wird durch $X^x$ dargestellt, wobei $X$ eine Dummy&ndash;Variable hinsichtlich der Ausgangssequenz ist: $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.$ Daraus folgt weiter $(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2$.
 
  
Bei einem blauen Übergang im ursprünglichen Diagramm &ndash; dies steht für $u_i = 1$ &ndash; ist im modifizierten Diagramm der Faktor $U$ hinzuzufügen. Aus der nebenstehenden Grafik erkennt man, dass die <u>Lösungsvorschläge 1, 3, 4 und 5</u> richtig sind.
+
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
 
+
*Das reduzierte Diagramm ist entsprechend der Auflistung im [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Theorieteil]] ein &bdquo;Ring&rdquo;. Daraus folgt:  
 
 
'''(2)'''&nbsp; Das reduzierte Diagramm ist entsprechend der Auflistung im [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Theorieteil]] ein &bdquo;Ring&rdquo;. Daraus folgt:  
 
 
:$$T_{\rm enh}(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
:$$T_{\rm enh}(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 
+
*Mit $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$ erhält man mit der angegebenen Reihenentwicklung:
Mit $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$ erhält man mit der angegebenen Reihenentwicklung:
+
:$$T_{\rm enh}(X, U) =  \frac{U \hspace{0.05cm} X^3}{1- U  \hspace{0.05cm}  X}  = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U  \hspace{0.05cm}  X) + (U  \hspace{0.05cm}  X)^2 +\text{...} \hspace{0.10cm} \right ]  
:$$T_{\rm enh}(X, U) =  \frac{U \hspace{0.05cm} X^3}{1- U  \hspace{0.05cm}  X}  = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U  \hspace{0.05cm}  X) + (U  \hspace{0.05cm}  X)^2 + ... \hspace{0.10cm} \right ]  
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Richtig sind somit die <u>Lösungsvorschläge 2 und 3</u>.
 
  
  
Zeile 80: Zeile 80:
  
  
'''(4)'''&nbsp; Die freie Distanz $d_{\rm F}$ lässt sich aus der Pfadgewichtsfunktion $T(X)$ ablesen, und zwar als der niedrigste Exponent der Dummy&ndash;Variablen $X \ \Rightarrow \ d_{\rm F} \ \underline{= 3}$.
+
'''(4)'''&nbsp; Die freie Distanz $d_{\rm F}$ lässt sich aus der Pfadgewichtsfunktion $T(X)$ als der niedrigste Exponent der Dummy&ndash;Variablen $X$ ablesen &nbsp; &rArr; &nbsp; $d_{\rm F} \ \underline{= 3}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 23. Januar 2018, 10:54 Uhr

Faltungscodierer mit $m = 1$ und Zustandsübergangsdiagramm

In Aufgabe 3.6 wurde das Zustandsübergangsdiagramm für den gezeichneten Faltungscodierer mit den Eigenschaften

  • Rate $R = 1/2$,
  • Gedächtnis $m = 1$,
  • Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1, \, D)$


ermittelt, das ebenfalls rechts dargestellt ist.

Es soll nun aus dem Zustandsübergangsdiagramm

  • die Pfadgewichtsfunktion $T(X)$, und
  • die erweiterte Pfadgewichtsfunktion $T_{\rm enh}(X, \, U)$


bestimmt werden, wobei $X$ und $U$ Dummy–Variablen sind.

Die Vorgehensweise ist im Theorieteil zu diesem Kapitel eingehend erläutert. Schließlich ist aus $T(X)$ noch die freie Distanz $d_{\rm F}$ zu bestimmen.



Hinweise:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \hspace{0.05cm}\text{...}\hspace{0.1cm}.$$
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Was ist bei der Modifizierung des Übergangsdiagramms zu beachten?

Der Zustand $S_0$ muss in $S_0$ und $S_0'$ aufgespalten werden.
Der Zustand $S_1$ muss in $S_1$ und $S_1'$ aufgespalten werden.
Der Übergang von $S_0$ nach $S_1$ ist mit $UX^2$ zu beschriften.
Der Übergang von $S_1$ nach $S_1$ ist mit $UX$ zu beschriften.
Der Übergang von $S_1$ nach $S_0'$ ist mit $X$ zu beschriften.

2

Welche Gleichungen gelten für die erweiterte Pfadgewichtsfunktion $T_{\rm enh}(X, \, U)$?

$T_{\rm enh}(X, \, U) = U^2X^3$
$T_{\rm enh}(X, \, U) = UX^3/(1 \, –UX)$
$T_{\rm enh}(X, \, U) = UX^3 + U^2X^4 + U^3X^5 + \hspace{0.05cm}\text{...}\hspace{0.1cm}$

3

Welche Gleichungen gelten für die „einfache” Pfadgewichtsfunktion $T(X)$?

$T(X) = X^3/(1 \, –X)$,
$T(X) = X^3 + X^4 + X^5 +\hspace{0.05cm}\text{...}\hspace{0.1cm}$

4

Wie groß ist die freie Distanz des betrachteten Codes?

$d_{\rm F} \ = \ $


Musterlösung

Zustandsübergangsdiagramm nach Modifikationen

(1)  Aus der nebenstehenden Grafik erkennt man, dass die Lösungsvorschläge 1, 3, 4 und 5 richtig sind:

  • Der Zustand $S_0$ muss in einen Startzustand $S_0$ und einen Endzustand ${S_0}'$ aufgespalten werden.
  • Der Grund hierfür ist, dass für die folgende Berechnung der Pfadgewichtsfunktion $T(X, \, U)$ alle Übergänge von $S_0$ nach $S_0$ ausgeschlossen werden müssen.
  • Jedes Codesymbol $x ∈ \{0, \, 1\}$ wird durch $X^x$ dargestellt, wobei $X$ eine Dummy–Variable hinsichtlich der Ausgangssequenz ist: $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.$ Daraus folgt weiter $(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2$.
  • Bei einem blauen Übergang im ursprünglichen Diagramm – dies steht für $u_i = 1$ – ist im modifizierten Diagramm der Faktor $U$ hinzuzufügen.


(2)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Das reduzierte Diagramm ist entsprechend der Auflistung im Theorieteil ein „Ring”. Daraus folgt:
$$T_{\rm enh}(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$
  • Mit $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$ erhält man mit der angegebenen Reihenentwicklung:
$$T_{\rm enh}(X, U) = \frac{U \hspace{0.05cm} X^3}{1- U \hspace{0.05cm} X} = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U \hspace{0.05cm} X) + (U \hspace{0.05cm} X)^2 +\text{...} \hspace{0.10cm} \right ] \hspace{0.05cm}.$$


(3)  Man kommt von der erweiterten Pfadgewichtsfunktion zu $T(X)$, indem der Formalparameter $U = 1$ gesetzt wird. Richtig sind also beide Lösungsvorschläge.


(4)  Die freie Distanz $d_{\rm F}$ lässt sich aus der Pfadgewichtsfunktion $T(X)$ als der niedrigste Exponent der Dummy–Variablen $X$ ablesen   ⇒   $d_{\rm F} \ \underline{= 3}$.