Applets:Dämpfung von Kupferkabeln: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 10: Zeile 10:
 
:$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
 
:$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
 
*Der Index „K” soll deutlich machen, dass das betrachtete LZI–System ein '''Ka'''abel ist.
 
*Der Index „K” soll deutlich machen, dass das betrachtete LZI–System ein '''Ka'''abel ist.
*Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K}(f)$ in $\rm dB$ (Dezibel)einzusetzen.
+
*Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K}(f)$ in $\rm dB$ (Dezibel) einzusetzen.
 
*Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K, Np}(f)$ in $\rm Np$ (Neper) einzusetzen.
 
*Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K, Np}(f)$ in $\rm Np$ (Neper) einzusetzen.
 
* Es gelten folgende Umrechnungen  $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ bzw. $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
 
* Es gelten folgende Umrechnungen  $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ bzw. $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
Zeile 30: Zeile 30:
 
Entsprechend gilt für das ''Kleinkoaxialkabel'''   ⇒  kurz '''Coax (1.2/4.4 mm)''':  
 
Entsprechend gilt für das ''Kleinkoaxialkabel'''   ⇒  kurz '''Coax (1.2/4.4 mm)''':  
 
:$$\alpha_0  = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 
:$$\alpha_0  = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
  \alpha_1 = 0.00039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
+
  \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
  
  
Zeile 37: Zeile 37:
  
 
===Dämpfungsfunktion einer Zweidrahtleitung===
 
===Dämpfungsfunktion einer Zweidrahtleitung===
Die Dämpfungsfunktion einer Zweidrahtleitung (englisch: ''Two&ndash;wired Line'#)der Länge $l$ wird in [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref> wie folgt angegeben:
+
Die Dämpfungsfunktion einer Zweidrahtleitung (englisch: ''Two&ndash;wired Line'')der Länge $l$ wird in [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref> wie folgt angegeben:
 
:$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$
 
:$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$
Dieser Funktionsverlauf ist nicht direkt interpretierbar, sondern es handelt sich um eine phänomenologische Beschreibung.
+
Dieser Funktionsverlauf ist nicht direkt interpretierbar, sondern es handelt sich um eine phänomenologische Beschreibungsform.
  
 
Ebenfalls in [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref>findet man die aus Messergebnissen ermittelten Konstanten:
 
Ebenfalls in [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref>findet man die aus Messergebnissen ermittelten Konstanten:
Zeile 49: Zeile 49:
  
 
Man erkennt aus diesen Zahlenwerten:  
 
Man erkennt aus diesen Zahlenwerten:  
*Dämpfungsmaß $α(f)$ und Dämpfungsfunktion $a_{\rm K}(f) = α(f) · l$ hängen signifikant vom Leitungsdurchmesser ab. Die seit 1994 verlegten Kabel  mit $d = 0.35 \ \rm (mm)$ und  $d = 0.5$ mm haben etwa ein um $10\%$ größeres Dämpfungsmaß als die älteren Leitungen mit  $d = 0.4$ und $d= 0.6$.  
+
*Dämpfungsmaß $α(f)$ und Dämpfungsfunktion $a_{\rm K}(f) = α(f) · l$ hängen signifikant vom Leitungsdurchmesser ab. Die seit 1994 verlegten Kabel  mit $d = 0.35 \ \rm (mm)$ und  $d = 0.5$ mm haben etwa ein um $10\%$ größeres Dämpfungsmaß als die älteren Leitungen mit  $d = 0.4$ bzw. $d= 0.6$.  
 
*Dieser mit den Herstellungs– und Verlegungskosten begründete kleinere Durchmesser vermindert allerdings die Reichweite $l_{\rm max}$ der auf diesen Leitungen eingesetzten Übertragungssysteme signifikant, so dass im schlimmsten Fall teuere Zwischengeneratoren eingesetzt werden müssen.  
 
*Dieser mit den Herstellungs– und Verlegungskosten begründete kleinere Durchmesser vermindert allerdings die Reichweite $l_{\rm max}$ der auf diesen Leitungen eingesetzten Übertragungssysteme signifikant, so dass im schlimmsten Fall teuere Zwischengeneratoren eingesetzt werden müssen.  
 
*Die heute üblichen Übertragungsverfahren für Kupferleitungen belegen allerdings nur ein relativ schmales Frequenzband, zum Beispiel sind dies bei [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]] $120\ \rm  kHz$ und bei [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL|DSL]] ca. $1100 \ \rm kHz$. Für $f = 1 \ \rm MHz$ beträgt das Dämpfungsmaß für ein 0.4 mm–Kabel etwa $20 \ \rm dB/km$, so dass selbst bei einer Kabellänge von $l = 4 \ \rm km$ der Dämpfungswert nicht über $80 \ \rm dB$ liegt.  
 
*Die heute üblichen Übertragungsverfahren für Kupferleitungen belegen allerdings nur ein relativ schmales Frequenzband, zum Beispiel sind dies bei [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]] $120\ \rm  kHz$ und bei [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL|DSL]] ca. $1100 \ \rm kHz$. Für $f = 1 \ \rm MHz$ beträgt das Dämpfungsmaß für ein 0.4 mm–Kabel etwa $20 \ \rm dB/km$, so dass selbst bei einer Kabellänge von $l = 4 \ \rm km$ der Dämpfungswert nicht über $80 \ \rm dB$ liegt.  
Zeile 62: Zeile 62:
 
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
 
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
 
Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrunde gelegten Bandbreite $B$ abhängigund lauten:
 
Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrunde gelegten Bandbreite $B$ abhängigund lauten:
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
+
:$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
Zeile 73: Zeile 73:
 
'''Umrechnung in Gegenrichtung'''
 
'''Umrechnung in Gegenrichtung'''
  
===Zum Kanaleinfluss  auf die Nyquistentzerrung=== 
+
'''Fehlt noch'''
<br>
 
[[Datei:UMTS_Bild_1.png|right|frame|Blockschaltbild des optimalen Nyquistentzerrers bei idealem Kanal|class=fit]]
 
In diesem Abschnitt gehen wir von folgendem Blockschaltbild eines Binärsystems bei idealem Kanal aus &nbsp; &rArr; &nbsp; $H_{\rm K}(f) = 1$.
 
  
Insbesondere gelte:
+
===Zum Kanaleinfluss  auf die binäre Nyquistentzerrung=== 
 +
[[Datei:UMTS_Bild_1.png|right|frame|Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers|class=fit]]
 +
Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender &nbsp;&rArr;&nbsp; $H_{\rm S}(f)$,  Kanal &nbsp;&rArr;&nbsp; $H_{\rm K}(f)$ und Empfänger &nbsp; &rArr;&nbsp; $H_{\rm E}(f)$.
  
*Das ''Sendeimpulsfilter'' wandelt die binären $\{0, \ 1\}$ Daten in physikalische Signale. Es wird beschrieben durch den Frequenzgang $H_{\rm S}(f)$, der formgleich mit dem Spektrum eines einzelnen Sendeimpulses ist.
+
In diesem Applet
 +
*vernachlässigen wir den Einfluss der Sendeimpulsform &nbsp; &rArr; &nbsp; $H_{\rm S}(f) \equiv 1$ &nbsp; &rArr; &nbsp; diracförmiges Sendesignal $s(t)$,
 +
*setzen ein binäres Nyquistsystem mit Cosinus&ndash;Roll-off um die Nyquistfrequenz $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ voraus: 
 +
:$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$  
  
 +
Das bedeutet: Das [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|erste Nyquistkriterium]] wird erfüllt&nbsp; &rArr; &nbsp; <br>Zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig  &nbsp; ⇒  &nbsp; es gibt keine [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]] (englisch: ''Intersymbol Interference'', ISI).
  
*Bei UMTS ist das Empfangsfilter $H_{\rm E}f) = H_{\rm S}(f)$ an den Sender angepasst (''Matched–Filter'') und der Gesamtfrequenzgang $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ erfüllt das [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|erste Nyquistkriterium]]:
+
Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:
 +
 
 +
:$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
 +
 
 +
Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal &nbsp; &rArr; &nbsp; $H_{\rm K}(f) \equiv 1$ und rechteckfömigem $H_{\rm CRO}(f) \equiv 1$ im Bereich $|f| \le f_{\rm Nyq}$:
 +
 
 +
:$$P_\text{N, min} =  P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .$$
 +
 
 +
Als Gütekriterium für ein gegebenes System verwenden wir den '''Gesamt&ndash;Systemwirkungsgrad''':
 +
 
 +
:$$\eta_\text{K+R} =  \frac{P_{\rm N} \ \big [\text{gegebenes System:  Kanal  }H_{\rm K}(f), \ \text{Roll-off-Faktor  }r \big ]}{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq}} \cdot \int_{0}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f.$$
 +
 
 +
Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: $$\eta_\text{K+R}$
 +
 
 +
 
 +
 
 +
 
 +
*Bei UMTS ist das Empfangsfilter $H_{\rm E}f) = H_{\rm S}(f)$ an den Sender angepasst (''Matched–Filter'') und der Gesamtfrequenzgang $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ erfüllt  
 
:$$ H(f) = H_{\rm CRO}(f)  =  \left\{ \begin{array}{c}    1 \\  0 \\  \cos^2 \left( \frac {\pi \cdot (|f| - f_1)}{2 \cdot (f_2 - f_1)} \right)\end{array} \right.\quad
 
:$$ H(f) = H_{\rm CRO}(f)  =  \left\{ \begin{array}{c}    1 \\  0 \\  \cos^2 \left( \frac {\pi \cdot (|f| - f_1)}{2 \cdot (f_2 - f_1)} \right)\end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\  {\rm sonst }\hspace{0.05cm}.  \end{array}
 
\begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\  {\rm sonst }\hspace{0.05cm}.  \end{array}
 
\begin{array}{*{20}c} |f| \le f_1,  \\ |f| \ge f_2,\\  \\\end{array}$$
 
\begin{array}{*{20}c} |f| \le f_1,  \\ |f| \ge f_2,\\  \\\end{array}$$
 
   
 
   
Das bedeutet: Zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig  &nbsp; ⇒  &nbsp; es treten keine [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]] (englisch: ''Intersymbol Interference'', ISI) auf. Die zugehörige Zeitfunktion lautet:
+
Die zugehörige Zeitfunktion lautet:
  
 
:$$h(t) = h_{\rm CRO}(t) ={\rm si}(\pi \cdot t/ T_{\rm C}) \cdot \frac{\cos(r \cdot \pi t/T_{\rm C})}{1- (2r \cdot  t/T_{\rm C})^2}. $$
 
:$$h(t) = h_{\rm CRO}(t) ={\rm si}(\pi \cdot t/ T_{\rm C}) \cdot \frac{\cos(r \cdot \pi t/T_{\rm C})}{1- (2r \cdot  t/T_{\rm C})^2}. $$

Version vom 6. März 2018, 15:12 Uhr

Applet in neuem Tab öffnen

Programmbeschreibung


Theoretischer Hintergrund


Betragsfrequenzgang und Dämpfungsfunktion

Es besteht folgender Zusammenhang zwischen dem Betragsfrequenzgang und der Dämpfungsfunktion:

$$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
  • Der Index „K” soll deutlich machen, dass das betrachtete LZI–System ein Kaabel ist.
  • Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K}(f)$ in $\rm dB$ (Dezibel) einzusetzen.
  • Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion $a_\text{K, Np}(f)$ in $\rm Np$ (Neper) einzusetzen.
  • Es gelten folgende Umrechnungen $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ bzw. $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
  • In diesem Applet werden ausschließlich die dB–Werte verwendet.

Dämpfungsfunktion eines Koaxialkabels

Die Dämpfungsfunktion eines Koaxialkabels der Länge $l$ wird in [Wel77][1] wie folgt angegeben:

$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
  • Beachten Sie bitte den Unterschied zwischen der Dämpfungsfunktion $a_{\rm K}(f)$ in $\rm dB$ und den „alpha”–Koeffizienten mit anderen Pseudo–Einheiten.
  • Die Dämpfungsfunktion $a_{\rm K}(f)$ ist direkt proportional zur Kabellänge $l$; $a_{\rm K}(f)/l$ bezeichnet man als „Dämpfungsmaß” oder „kilometrische Dämpfung”.
  • Der frequenzunabhängige Anteil $α_0$ des Dämpfungsmaßes berücksichtigt die Ohmschen Verluste.
  • Der frequenzproportionale Anteil $α_1 · f$ des Dämpfungsmaßes ist auf die Ableitungsverluste („Querverluste”) zurückzuführen.
  • Der dominante Anteil $α_2$ geht auf den Skineffekt zurück, der bewirkt, dass bei höherfrequentem Wechselstrom die Stromdichte im Leiterinneren niedriger ist als an der Oberfläche. Dadurch steigt der Widerstandsbelag einer elektrischen Leitung mit der Wurzel aus der Frequenz an.


Die Konstanten für das Normalkoaxialkabel mit 2.6 mm Innendurchmesser und 9.5 mm Außendurchmesser   ⇒  kurz Coax (2.6/9.5 mm) lauten:

$$\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$

Entsprechend gilt für das Kleinkoaxialkabel'   ⇒  kurz Coax (1.2/4.4 mm):

$$\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$


Diese Werte können aus den geometrischen Abmessungen der Kabel berechnet werden und wurden durch Messungen am Fernmeldetechnischen Zentralamt in Darmstadt bestätigt – siehe[Wel77][1] . Sie gelten für eine Temperatur von 20°C (293 K) und Frequenzen größer als 200 kHz.


Dämpfungsfunktion einer Zweidrahtleitung

Die Dämpfungsfunktion einer Zweidrahtleitung (englisch: Two–wired Line)der Länge $l$ wird in [PW95][2] wie folgt angegeben:

$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$

Dieser Funktionsverlauf ist nicht direkt interpretierbar, sondern es handelt sich um eine phänomenologische Beschreibungsform.

Ebenfalls in [PW95][2]findet man die aus Messergebnissen ermittelten Konstanten:

  • $d = 0.35 \ {\rm mm}$:   $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
  • $d = 0.40 \ {\rm mm}$:   $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
  • $d = 0.50 \ {\rm mm}$:   $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$,
  • $d = 0.60 \ {\rm mm}$:   $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$.


Man erkennt aus diesen Zahlenwerten:

  • Dämpfungsmaß $α(f)$ und Dämpfungsfunktion $a_{\rm K}(f) = α(f) · l$ hängen signifikant vom Leitungsdurchmesser ab. Die seit 1994 verlegten Kabel mit $d = 0.35 \ \rm (mm)$ und $d = 0.5$ mm haben etwa ein um $10\%$ größeres Dämpfungsmaß als die älteren Leitungen mit $d = 0.4$ bzw. $d= 0.6$.
  • Dieser mit den Herstellungs– und Verlegungskosten begründete kleinere Durchmesser vermindert allerdings die Reichweite $l_{\rm max}$ der auf diesen Leitungen eingesetzten Übertragungssysteme signifikant, so dass im schlimmsten Fall teuere Zwischengeneratoren eingesetzt werden müssen.
  • Die heute üblichen Übertragungsverfahren für Kupferleitungen belegen allerdings nur ein relativ schmales Frequenzband, zum Beispiel sind dies bei ISDN $120\ \rm kHz$ und bei DSL ca. $1100 \ \rm kHz$. Für $f = 1 \ \rm MHz$ beträgt das Dämpfungsmaß für ein 0.4 mm–Kabel etwa $20 \ \rm dB/km$, so dass selbst bei einer Kabellänge von $l = 4 \ \rm km$ der Dämpfungswert nicht über $80 \ \rm dB$ liegt.


Umrechnung zwischen $k$– und $\alpha$– Parametern

Es besteht die Möglichkeit, die $k$–Parameter des Dämpfungsmaßes   ⇒   $\alpha_{\rm I} (f)$ in entsprechende $\alpha$–Parameter   ⇒   $\alpha_{\rm II} (f)$ umzurechnen:

$$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
$$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.$$

Als Kriterium dieser Umrechnung gehen wir davon aus, dass die quadratische Abweichung dieser beiden Funktioneninnerhalb einer Bandbreite $B$ minimal ist:

$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$

Es ist offensichtlich, dass $α_0 = k_1$ gelten wird. Die Parameter $α_1$ und $α_2$ sind von der zugrunde gelegten Bandbreite $B$ abhängigund lauten:

$$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$

$\text{Beispiel 1:}$ 

  • Für $k_3 = 1$ (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
  • Für $k_3 = 0.5$ (entsprechend Skineffekt) erhält man folgende Koeffizienten:   $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
  • Für $k_3 < 0.5$ ergibt sich ein negatives $\alpha_1$. Umrechnung ist nur für $0.5 \le k_3 \le 1$ möglich.


Umrechnung in Gegenrichtung

Fehlt noch

Zum Kanaleinfluss auf die binäre Nyquistentzerrung

Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers

Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender  ⇒  $H_{\rm S}(f)$, Kanal  ⇒  $H_{\rm K}(f)$ und Empfänger   ⇒  $H_{\rm E}(f)$.

In diesem Applet

  • vernachlässigen wir den Einfluss der Sendeimpulsform   ⇒   $H_{\rm S}(f) \equiv 1$   ⇒   diracförmiges Sendesignal $s(t)$,
  • setzen ein binäres Nyquistsystem mit Cosinus–Roll-off um die Nyquistfrequenz $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ voraus:
$$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$

Das bedeutet: Das erste Nyquistkriterium wird erfüllt  ⇒  
Zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig   ⇒   es gibt keine Impulsinterferenzen (englisch: Intersymbol Interference, ISI).

Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:

$$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$

Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal   ⇒   $H_{\rm K}(f) \equiv 1$ und rechteckfömigem $H_{\rm CRO}(f) \equiv 1$ im Bereich $|f| \le f_{\rm Nyq}$:

$$P_\text{N, min} = P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .$$

Als Gütekriterium für ein gegebenes System verwenden wir den Gesamt–Systemwirkungsgrad:

$$\eta_\text{K+R} = \frac{P_{\rm N} \ \big [\text{gegebenes System: Kanal }H_{\rm K}(f), \ \text{Roll-off-Faktor }r \big ]}{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq}} \cdot \int_{0}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f.$$

Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: $$\eta_\text{K+R}$ *Bei UMTS ist das Empfangsfilter $H_{\rm E}f) = H_{\rm S}(f)$ an den Sender angepasst (''Matched–Filter'') und der Gesamtfrequenzgang $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ erfüllt :$$ H(f) = H_{\rm CRO}(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \cos^2 \left( \frac {\pi \cdot (|f| - f_1)}{2 \cdot (f_2 - f_1)} \right)\end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm sonst }\hspace{0.05cm}. \end{array} \begin{array}{*{20}c} |f| \le f_1, \\ |f| \ge f_2,\\ \\\end{array}$$ Die zugehörige Zeitfunktion lautet: :$$h(t) = h_{\rm CRO}(t) ={\rm si}(\pi \cdot t/ T_{\rm C}) \cdot \frac{\cos(r \cdot \pi t/T_{\rm C})}{1- (2r \cdot t/T_{\rm C})^2}. $$ „CRO” steht hierbei für [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus–Rolloff]] (englisch: ''Raised Cosine''). Die Summe $f_1 + f_2$ ist gleich dem Kehrwert der Chipdauer $T_{\rm C} = 260 \ \rm ns$, also gleich $3.84 \ \rm MHz$. Der ''Rolloff–Faktor'' (wir bleiben bei der in $\rm LNTwww$ gewählten Bezeichnung $r$, im UMTS–Standard wird hierfür $\alpha$ verwendet) :$$r = \frac{f_2 - f_1}{f_2 + f_1} $$ wurde bei UMTS zu $r = 0.22$ festgelegt. Die beiden Eckfrequenzen sind somit :$$f_1 = {1}/(2 T_{\rm C}) \cdot (1-r) \approx 1.5\,{\rm MHz}, \hspace{0.2cm} f_2 ={1}/(2 T_{\rm C}) \cdot (1+r) \approx 2.35\,{\rm MHz}.$$ Die erforderliche Bandbreite beträgt $B = 2 · f_2 = 4.7 \ \rm MHz$. Für jeden UMTS–Kanal steht somit mit $5 \ \rm MHz$ ausreichend Bandbreite zur Verfügung. [[Datei:P_ID1547__Bei_T_4_3_S5b_v1.png|right|frame|Cosinus–Rolloff–Spektrum und Impulsantwort]] <div class="bluebox"> $\text{Fazit:}$  Die Grafik zeigt *links das (normierte) Nyquistspektrum $H(f)$, und *rechts den zugehörigen Nyquistimpuls $h(t)$, dessen Nulldurchgänge im Abstand $T_{\rm C}$ äquidistant sind. <br clear="all"> $\text{Es ist zu beachten:}$ * Das Sendefilter $H_{\rm S}(f)$ und Matched–Filter $H_{\rm E}(f)$ sind jeweils [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Wurzel.E2.80.93Nyquist.E2.80.93Systeme|Wurzel–Cosinus–Rolloff–förmig]] (englisch: ''Root Raised Cosine''). Erst das Produkt $H(f) = H_{\rm S}(f) · H_{\rm E}(f)$ den Cosinus–Rolloff. *Das bedeutet auch: Die Impulsantworten $h_{\rm S}(t)$ und $h_{\rm E}(t)$ erfüllen für sich allein die erste Nyquistbedingung nicht. Erst die Kombination aus beiden (im Zeitbereich die Faltung) führt zu den gewünschten äquidistanten Nulldurchgängen. <div style="clear:both;"> </div> </div> $$a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski & Wellhausen.}$$ *Umrechnung der $k$-Parameter in die $a$-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite $B$ minimal sein soll: $$a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.$$

  • Kontrolle: $k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.$
  • Der Gesamtfrequenzgang $H(f)$ ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor $r$, wobei stets $B=f_2$ und $r=\frac{f_2-f_1}{f_2+f_1}$ gelten soll.
  • Ohne Berücksichtigung des Sendespektrums gilt $H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}$.
  • Der angegebene Integralwert $=\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f$ ist ein Maß für die Rauschleistung des Systems, wenn der Kanal $H_K(f)$ durch das Empfangsfilter $H_E(f)$ in weiten Bereichen bis $f_1$ vollständig entzerrt wird.


  • idealer Kanal ($a_0=a_1=a_2=0$ dB), $B=20$ MHz, $r=0$: Integralwert = $40$ MHz.
  • schwach verzerrender Kanal ($a_2=5$ dB), $B=20$ MHz, $r=0.5$: Integralwert $\approx 505$ MHz.

Versuchsdurchführung

Exercises binomial fertig.png
  • Wählen Sie zunächst die Nummer 1 ... 6 der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Hide solution”.
  • Aufgabenstellung und Lösung in Englisch.


Die Nummer 0 entspricht einem „Reset”:

  • Gleiche Einstellung wie beim Programmstart.
  • Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.


In der folgenden Beschreibung bedeutet

  • Blau:   Verteilungsfunktion 1 (im Applet blau markiert),
  • Rot:     Verteilungsfunktion 2 (im Applet rot markiert).


(1)  Setzen Sie Blau zunächst auf $\text{Coax (2.6/9.5 mm)}$ und anschließend auf $\text{Coax (1.2/4.4 mm)}$. Die Kabellänge sei jeweils $l_{\rm Blau}= 3\ \rm km$.

Betrachten und Interpretieren Sie $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$, insbesondere die Funktionswerte $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ und $\vert H_{\rm K}(f = 0) \vert$.


$\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};$

$\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 39.2\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9951;$

$\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 86.0\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9768.$


(2)  Für Blau gelte $\text{Coax (1.2/4.4 mm)}$ und $l_{\rm Blau} = 3\ \rm km$. Wie wird $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ von $\alpha_0$, $\alpha_1$ und $\alpha_2$ beeinflusst?


$\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{ (Skineffekt). Die Beiträge von } \alpha_0\text{ (Ohmsche Verluste) und }\alpha_1 \text{ (Querverluste) sind jeweils nur ca. 0.2 dB.}$


(3)  Setzen Sie zusätzlich Rot auf $\text{Two–wired Line (0.5 mm)}$ und $l_{\rm Rot} = 3\ \rm km$. Welcher Wert ergibt sich für $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?

Bis zu welcher Länge $l_{\rm Rot}$ liegt die rote Dämfungsfunktion unter der blauen?


$\Rightarrow\hspace{0.3cm}\text{Für die rote Kurve gilt: }a_{\rm K}(f = f_\star) = 262.5 {\ \rm dB} \text{. Obige Bedingung wird erfüllt für }l_{\rm Rot} = 0.95\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = ??? {\ \rm dB}.$


(4)  Setzen Sie Rot auf $\text{Two–wired Line (0.5 mm)}$ und Blau auf $\text{Conversion of Red}$. Es gelte $l_{\rm Rot} = l_{\rm Blau} = 1\ \rm km$.

Betrachten und Interpretieren Sie die dargestellten Funktionsverläufe für $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$.


$\Rightarrow\hspace{0.3cm}\text{Sehr gute Approximation der Zweidrahtleitung durch den blauen Parametersatz, sowohl bezüglich }a_{\rm K}(f) \text{ als auch }\vert H_{\rm K}(f) \vert.$


(5)  Es gelten die Einstellungen von (4). Welche Anteile der Dämpfungsfunktion gehen auf Ohmschen Verlust, Querverluste und Skineffekt zurück?


$\Rightarrow\hspace{0.3cm}\text{Lösung anhand '''Blau''': }\alpha_0(f = f_\star= 30 \ {\rm MHz}) = 4 \ {\rm dB/km}, \hspace{0.2cm}\alpha_1(f = f_\star) = 12.8 \ {\rm dB/km}, \hspace{0.2cm}\alpha_2(f = f_\star) = 60.9 \ {\rm dB/km};$

$\hspace{1.15cm}\text{Bei einer Zweidrahtleitung ist der Einfluss der Längs– und der Querverluste signifikant größer als bei einem Koaxialkabel.}$


(6)  Variieren Sie ausgehend von der bisherigen Einstellung den Parameter $0.5 \le k_3 \le 1$. Was erkennt man anhand von $a_{\rm K}(f)$ und $\vert H_{\rm K}(f) \vert$?


$\Rightarrow\hspace{0.3cm}\text{Bei festem }k_2\text {wird }a_{\rm K}(f)\text{ immer größer und es ergibt sich für }k_3 = 1\text{ ein linearer Verlauf; }\vert H_{\rm K}(f) \vert \text{ nimmt immer schneller ab;}$

$\hspace{1.15cm}\text{Mit }k_3 \to 0.5\text{ nähert sich die Dämpfungsfunktion der Zweidrahtleitung der eines Koaxialkabels immer mehr an.}$




Vorgeschlagene Parametersätze

(1)   Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=20$, $a_1=0$, $a_2=0$:
Konstante Werte $a_K=20$ dB und $\left| H_K(f)\right|=0.1$. Nur Ohmsche Verluste werden berücksichtigt.
(2) Parameter wie (1), aber zusätzlich $a_1=1$ dB/(km · MHz):
Linearer Anstieg von $a_K(f)$ zwischen $20$ dB und $50$ dB, $\left| H_K(f)\right|$ fällt beidseitig exponentiell ab.
(3)   Parameter wie (1), aber $a_0=0$, $a_1=0$, $a_2=1$ dB/(km · MHz1/2).
$a_K(f)$ und $\left| H_K(f)\right|$ werden ausschließlich durch den Skineffekt bestimmt. $a_K(f)$ ist proportional zu $f^{1/2}$.
(4)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel $2.6/9.5$ mm“ (Normalkoaxialkabel):
Es überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=13.05$ dB; ohne $a_0$: $13.04$ dB, ohne $a_1=12.92$ dB.
(5)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel $1.2/4.4$ mm“ (Kleinkoaxialkabel):
Wieder überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=28.66$ dB; ohne $a_0$: $28.59$ dB, ohne $a_1=28.48$ dB.
(6)   Nur roter Parametersatz, $l=1 km$, $b=30$ MHz, $r=0$, Einstellung „Zweidrahtleitung $0.4$ mm“.
Skineffekt ist auch hier dominant; $a_k$ ($f=30$ MHz)$=111.4$ dB; ohne $k_1$: $106.3$ dB.
(7)   Parameter wie (6), aber nun Halbierung der Kabellänge ($l=0.5$ km):
Auch die Dämpfungswerte werden halbiert: $a_k$ ($f=30$ MHz)$=55.7$ dB; ohne $k_1$: $53.2$ dB.
(8)   Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:
Sehr gute Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.4$ dB.
(9)   Parameter wie (8), aber nun Approximation auf die Bandbreite $B=20$ MHz:
Noch bessere Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.15$ dB.
(10)   Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=a_1=a_2=0$; unten Darstellung $\left| H_K(f)\right|^2$:
Im gesamten Bereich ist $\left| H_K(f)\right|^2=1$; der Integralwert ist somit $2B=60$ (in MHz).
(11)   Parameter wie (10), aber nun mit Einstellung „Koaxialkabel $2.6/9.5$ mm“ (Normalkoaxialkabel):
$\left| H_K(f)\right|^2$ ist bei $f=1$ etwa $1$ und steigt zu den Rändern bis ca. $20$. Der Integralwert ist ca. $550$.
(12)   Parameter wie (11), aber nun mit der deutlich größeren Kabellänge $l=5$ km:
Deutliche Verstärkung des Effekts; Anstieg bis ca. $3.35\cdot 10^6$ am Rand und Integralwert $2.5\cdot 10^7$.
(13)   Parameter wie (12), aber nun mit Rolloff-Faktor $r=0.5$:
Deutliche Abschwächung des Effekts; Anstieg bis ca. $5.25\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.07\cdot 10^6$.
(14)   Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste ($a_0=0$):
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. $5.15\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.05\cdot 10^6$.
(15)   Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste ($a_1=0$):
Ebenfalls kein großer Unterschied; Anstieg bis ca. $4.74\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $0.97\cdot 10^6$.
(16)   Nur roter Parametersatz, $l=1$ km, $B=30$ MHz, $r=0.5$, Einstellung „Zweidrahtleitung $0.4$ mm“:
Anstieg bis ca. $3\cdot 10^8$ ($f$ ca. $23$ MHz), Integralwert ca. $4.55\cdot 10^9$; ohne $k_1$: $0.93\cdot 10^8$ ($f$ ca. $23$ MHz) bzw. $1.41\cdot 10^9$.

Quellenverzeichnis

Applet in neuem Tab öffnen

  1. 1,0 1,1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
  2. 2,0 2,1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.