Lineare zeitinvariante Systeme/Laplace–Transformation und p–Übertragungsfunktion: Unterschied zwischen den Versionen
Zeile 22: | Zeile 22: | ||
==Definition der Laplace–Transformation== | ==Definition der Laplace–Transformation== | ||
<br> | <br> | ||
− | Ausgehend vom [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegral]] | + | Ausgehend vom [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegral]], |
− | $$X(f) = \int_{-\infty}^{+\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm} 2\pi f t}}\hspace{0.1cm}{\rm d}t$$ | + | :$$X(f) = \int_{-\infty}^{+\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm} 2\pi f t}}\hspace{0.1cm}{\rm d}t,$$ |
− | ergibt sich bei | + | ergibt sich bei kausaler Zeitfunktion (⇒ $x(t) = 0$ für $t < 0$) mit der formalen Substitution $p = {\rm j} · 2πf$ direkt die Laplace–Transformation. |
− | {{Definition} | + | |
+ | {{BlaueBox|TEXT= | ||
+ | $\text{Definition:}$ | ||
Die '''Laplace–Transformierte''' einer kausalen Zeitfunktion $x(t)$ lautet: | Die '''Laplace–Transformierte''' einer kausalen Zeitfunktion $x(t)$ lautet: | ||
− | $$X_{\rm L}(p) = \int_{0}^{\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}, \hspace{0.3cm}{\rm kurz}\hspace{0.3cm} X_{\rm L}(p) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad x(t)\hspace{0.05cm}.$$ | + | :$$X_{\rm L}(p) = \int_{0}^{\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t} }\hspace{0.1cm}{\rm d}t\hspace{0.05cm}, \hspace{0.3cm}{\rm kurz}\hspace{0.3cm} X_{\rm L}(p) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad x(t)\hspace{0.05cm}.$$ }} |
− | |||
Der Zusammenhang zwischen der Laplace–Transformierten $X_{\rm L}(p)$ und dem physikalischen Spektrum $X(f)$ ist häufig wie folgt gegeben: | Der Zusammenhang zwischen der Laplace–Transformierten $X_{\rm L}(p)$ und dem physikalischen Spektrum $X(f)$ ist häufig wie folgt gegeben: | ||
− | $$X(f) = X_{\rm L}(p) \Bigg |_{{\hspace{0.1cm} p\hspace{0.05cm}={\rm \hspace{0.05cm} j\hspace{0.05cm}2\pi \it f}}}.$$ | + | :$$X(f) = X_{\rm L}(p) \Bigg |_{{\hspace{0.1cm} p\hspace{0.05cm}={\rm \hspace{0.05cm} j\hspace{0.05cm}2\pi \it f}}}.$$ |
− | + | Hat allerdings das Signal $x(t)$ periodische Anteile und beinhaltet damit die Spektralfunktion $X(f)$ zusätzliche Diracfunktionen, so ist diese Gleichung nicht anwendbar. In diesem Fall muss $p = α + {\rm j} · 2πf$ angesetzt werden und es ist dann der Grenzübergang $α → 0$ zu bilden. | |
− | {{Beispiel} | + | {{GraueBox|TEXT= |
− | Wir gehen von der einseitig exponentiell abfallenden Zeitfunktion entsprechend der [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Real.E2.80.93_und_Imagin.C3.A4rteil_einer_kausalen_.C3.9Cbertragungsfunktion|Skizze]] | + | $\text{Beispiel 1:}$ |
− | $$x(t) = \left\{ \begin{array}{c} 0 \\ 0.5 \\ {\rm e}^{-t/T} \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \end{array}\begin{array}{*{20}c}{ t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$ | + | Wir gehen von der einseitig exponentiell abfallenden Zeitfunktion entsprechend der [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Real.E2.80.93_und_Imagin.C3.A4rteil_einer_kausalen_.C3.9Cbertragungsfunktion|Skizze im Beispiel 1]] des Kapitels „Real– und Imaginärteil einer kausalen Übertragungsfunktion” aus: |
+ | :$$x(t) = \left\{ \begin{array}{c} 0 \\ 0.5 \\ {\rm e}^{-t/T} \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c}{ t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$ | ||
Damit lautet die Laplace–Transformierte: | Damit lautet die Laplace–Transformierte: | ||
− | $$X_{\rm L}(p) = \int_{0}^{\infty} {\rm e}^{-t/T} \cdot {\rm e}^{-pt} \hspace{0.1cm}{\rm d}t= \frac {1}{p + 1/T} \cdot {{\rm e}^{-(p+1/T) \hspace{0.05cm}\cdot \hspace{0.05cm}t}}\hspace{0.05cm}\Bigg | + | :$$X_{\rm L}(p) = \int_{0}^{\infty} {\rm e}^{-t/T} \cdot {\rm e}^{-pt} \hspace{0.1cm}{\rm d}t= \frac {1}{p + 1/T} \cdot {{\rm e}^{-(p+1/T) \hspace{0.05cm}\cdot \hspace{0.05cm}t}}\hspace{0.05cm}\Bigg \vert_{t \hspace{0.05cm}=\hspace{0.05cm} 0}^{\infty}= \frac {1}{p + 1/T} \hspace{0.05cm} .$$ |
Mit $p = {\rm j} · 2πf$ erhält man die herkömmliche Spektralfunktion bezüglich $f$: | Mit $p = {\rm j} · 2πf$ erhält man die herkömmliche Spektralfunktion bezüglich $f$: | ||
− | $$X(f) = \frac {1}{{\rm j \cdot 2\pi \it f} + 1/T} = \frac {T}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$ | + | :$$X(f) = \frac {1}{{\rm j \cdot 2\pi \it f} + 1/T} = \frac {T}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$ |
Betrachtet man dagegen den Frequenzgang eines Tiefpasses erster Ordnung, dessen Impulsantwort $h(t)$ sich gegenüber der obigen Zeitfunktion um den Faktor $1/T$ unterscheidet, so gilt für die Laplace–Transformierte bzw. die Fourier–Transformierte: | Betrachtet man dagegen den Frequenzgang eines Tiefpasses erster Ordnung, dessen Impulsantwort $h(t)$ sich gegenüber der obigen Zeitfunktion um den Faktor $1/T$ unterscheidet, so gilt für die Laplace–Transformierte bzw. die Fourier–Transformierte: | ||
− | $$H_{\rm L}(p)= \frac {1/T}{p + 1/T}= \frac {1}{1 + p \cdot T} \hspace{0.05cm} , \hspace{0.8cm}H(f) = \frac {1}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$ | + | :$$H_{\rm L}(p)= \frac {1/T}{p + 1/T}= \frac {1}{1 + p \cdot T} \hspace{0.05cm} , \hspace{0.8cm}H(f) = \frac {1}{1+{\rm j \cdot 2\pi \it fT} } = \frac {1}{1+{\rm j} \cdot f/f_{\rm G} } \hspace{0.05cm} .$$ |
− | Häufig verwendet man dann anstelle des Parameters $T$ die 3dB–Grenzfrequenz $f_{\rm G} = 1/(2πT)$. | + | Häufig verwendet man dann anstelle des Parameters $T$ die 3dB–Grenzfrequenz $f_{\rm G} = 1/(2πT)$.}} |
− | |||
==Einige wichtige Laplace–Korrespondenzen== | ==Einige wichtige Laplace–Korrespondenzen== | ||
− | + | <br> | |
+ | Nachfolgend sind einige wichtige Laplace–Korrespondenzen zusammengestellt. Alle hier betrachteten Zeitsignale $x(t)$ sind als dimensionslos angenommen. Aus diesem Grund besitzt $X_{\rm L}(p)$ dann als Integral über die Zeit stets die Einheit „Sekunde”. | ||
+ | |||
+ | [[Datei:P_ID1758__LZI_T_3_2_S3.png |center|frame| Tabelle mit einigen Laplace-Transformierten|class=fit]] | ||
+ | |||
+ | Die Laplace–Transformierte der [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale#Diracimpuls|Diracfunktion]] $δ(t)$ ist $X_{\rm L}(p) = 1$ (Diagramm $\rm A$). Durch Anwendung des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Integrationssatz|Integrationssatzes]] erhält man $X_{\rm L}(p) = 1/p$ für die Sprungfunktion $γ(t)$ (Diagramm $\rm B$) und aus dieser durch Multiplikation mit $1/(pT)$ die Laplace–Transformierte der linear ansteigenden Funktion $x(t) = t/T$ für $t > 0$ (Diagramm $\rm C$). | ||
+ | |||
+ | Die [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale#Rechteckimpuls|Rechteckfunktion]] kann aus der Subtraktion zweier um $T$ auseinanderliegender Sprungfunktionen $γ(t)$ und $γ(t – T)$ erzeugt werden, so dass sich nach dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz]] die Laplace–Transformierte $X_{\rm L}(p) = (1 – {\rm e}^{–pT})/p$ ergibt (Diagramm $\rm D$). Durch Integration erhält man daraus die Rampenfunktion bzw. nach Multiplikation mit $1/(pT)$ deren Laplace–Transformierte (Diagramm $\rm E$). | ||
+ | |||
+ | Die Exponentialfunktion (Diagramm $\rm F$) wurde bereits auf der [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion#Definition_der_Laplace.E2.80.93Transformation|letzten Seit]]e betrachtet. Mit dem Faktor $1/T$ beschreibt diese gleichzeitig die Impulsantwort eines Tiefpasses erster Ordnung. Durch Quadrierung erhält man die $p$–Spektralfunktion eines Tiefpasses zweiter Ordnung. Die zugehörige Zeitfunktion lautet $x(t) = t/T · {\rm e}^{–t/T}$ (Diagramm $\rm G$). | ||
− | + | Neben der kausalen $\rm si$–Funktion (Diagramm $\rm H$) sind in der Tabelle auch die Laplace–Transformierten der kausalen Cosinus– und Sinusfunktion (Diagramme $\rm I$ und $\rm J$) angegeben, die sich zu $p/(p^2 + ω_0^2)$ bzw. $ω_0/(p^2 + ω_0^2)$ ergeben. Hierbei bezeichnet $ω_0 = 2πf_0 = 2π/T$ die so genannte Kreisfrequenz. | |
− | |||
− | |||
− | |||
− | |||
==Pol–Nullstellen–Darstellung von Schaltungen== | ==Pol–Nullstellen–Darstellung von Schaltungen== | ||
<br> | <br> | ||
− | Ein jedes lineare zeitinvariante ( | + | Ein jedes lineare zeitinvariante System ('''LZI'''), das durch eine Schaltung aus diskreten zeitkonstanten Bauelementen wie |
− | + | *Widerständen $(R)$, | |
+ | *Kapazitäten $(C)$, | ||
+ | *Induktivitäten $(L)$ und | ||
+ | *Verstärkerelementen | ||
+ | |||
− | Alle Koeffizienten des Zählers ⇒ $A_Z, ..., A_0$ und des Nenners ⇒ $B_N, ..., B_0$ sind reell. Weiter bezeichnen | + | realisiert werden kann, besitzt eine gebrochen–rationale '''$p$–Übertragungsfunktion''': |
+ | :$$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{...} + A_2 \cdot p^2 + A_1 \cdot p + A_0} {B_N \cdot p^N +\text{...} + B_2 \cdot p^2 + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)} \hspace{0.05cm} .$$ | ||
+ | |||
+ | Alle Koeffizienten des Zählers ⇒ $A_Z, \text{...} , A_0$ und des Nenners ⇒ $B_N, \text{...} , B_0$ sind reell. Weiter bezeichnen | ||
*$Z$ den Grad des Zählerpolynoms $Z(p)$, | *$Z$ den Grad des Zählerpolynoms $Z(p)$, | ||
*$N$ den Grad des Nennerpolynoms $N(p)$. | *$N$ den Grad des Nennerpolynoms $N(p)$. | ||
− | + | {{BlaueBox|TEXT= | |
− | $$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i}} {\prod\limits_{i=1}^N p - p_{\rm x i}}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot ... \cdot (p - p_{{\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot ... \cdot (p - p_{{\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$ | + | $\text{Äquivalente Pol–Nullstellen–Darstellung:}$ |
+ | Für die $p$–Übertragungsfunktion kann auch geschieben werden: | ||
+ | :$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i} } {\prod\limits_{i=1}^N p - p_{\rm x i} }= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$ | ||
− | Die $Z + N +$ | + | Die $Z + N + 1$ Parameter bedeuten: |
*$K = A_Z/B_N$ ist ein konstanter Faktor. Gilt $Z = N$, so ist dieser dimensionslos. | *$K = A_Z/B_N$ ist ein konstanter Faktor. Gilt $Z = N$, so ist dieser dimensionslos. | ||
− | *Die Lösungen der Gleichung $Z(p) = 0$ ergeben die $Z$ Nullstellen $p_{o1}, ..., p_{oZ}$ von $H_{\rm L}(p)$. | + | *Die Lösungen der Gleichung $Z(p) = 0$ ergeben die $Z$ Nullstellen $p_{o1},\text{...}, p_{oZ}$ von $H_{\rm L}(p)$. |
− | *Die Nullstellen des Nennerpolynoms $N(p)$ liefern die $N$ Polstellen (oder kurz Pole). | + | *Die Nullstellen des Nennerpolynoms $N(p)$ liefern die $N$ Polstellen (oder kurz Pole). }} |
− | Die Umformung ist eindeutig. Dies erkennt man daran, dass die | + | Die Umformung ist eindeutig. Dies erkennt man daran, dass die $p$–Übertragungsfunktion gemäß der ersten Gleichung ebenfalls nur durch $Z + N + 1$ freie Parameter bestimmt ist, da einer der Koeffizienten $A_Z, \text{...} , A_0, B_N, \text{...} , B_0$ ohne Änderung des Quotienten auf $1$ normiert werden kann. |
− | + | {{GraueBox|TEXT= | |
− | + | $\text{Beispiel 2:}$ | |
Wir betrachten den gezeichneten Vierpol mit einer Induktivität $L$ (komplexer Widerstand $pL$) im Längszweig sowie im Querzweig die Serienschaltung eines Ohmschen Widerstandes $R$ und einer Kapazität $C$ mit dem komplexen Widerstand $1/(pC)$. | Wir betrachten den gezeichneten Vierpol mit einer Induktivität $L$ (komplexer Widerstand $pL$) im Längszweig sowie im Querzweig die Serienschaltung eines Ohmschen Widerstandes $R$ und einer Kapazität $C$ mit dem komplexen Widerstand $1/(pC)$. | ||
− | [[Datei:P_ID1759__LZI_T_3_2_S4_neu.png|frame|Betrachteter Vierpol und dazugehöriges Pol–Nullstellen–Diagramm|class=fit]] | + | [[Datei:P_ID1759__LZI_T_3_2_S4_neu.png|center|frame|Betrachteter Vierpol und dazugehöriges Pol–Nullstellen–Diagramm|class=fit]] |
Damit lautet die $p$–Übertragungsfunktion: | Damit lautet die $p$–Übertragungsfunktion: | ||
− | $$H_{\rm L}(p)= \frac {Y_{\rm L}(p)} {X_{\rm L}(p)}= \frac {R + {1}/{(pC)}} {pL + R +{1}/{(pC)}}= \frac {1 + p \cdot{RC}} {1 + p \cdot{RC}+ p^2 \cdot{LC}} | + | :$$H_{\rm L}(p)= \frac {Y_{\rm L}(p)} {X_{\rm L}(p)}= \frac {R + {1}/{(pC)} } {pL + R +{1}/{(pC)} }= \frac {1 + p \cdot{RC} } {1 + p \cdot{RC}+ p^2 \cdot{LC} } |
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
Setzt man $p = {\rm j} · 2πf$ ein, so erhält man die Fourier–Übertragungsfunktion (bzw. den Frequenzgang). Dividiert man in obiger Gleichung Zähler und Nenner durch $LC$, so ergibt sich: | Setzt man $p = {\rm j} · 2πf$ ein, so erhält man die Fourier–Übertragungsfunktion (bzw. den Frequenzgang). Dividiert man in obiger Gleichung Zähler und Nenner durch $LC$, so ergibt sich: | ||
− | $$H_{\rm L}(p)= \frac {R} {L}\cdot \frac {p + {1}/{(RC)}} {p^2 + {R}/ {L}\cdot p + {1}/{(LC)}}= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x 1})(p - p_{\rm x 2})} | + | :$$H_{\rm L}(p)= \frac {R} {L}\cdot \frac {p + {1}/{(RC)} } {p^2 + {R}/ {L}\cdot p + {1}/{(LC)} }= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x 1})(p - p_{\rm x 2})} |
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | Im rechten Gleichungsteil ist die Übertragungsfunktion $H_{\rm L}(p)$ in Pol–Nullstellen–Notation angegeben. Durch Koeffizientenvergleich ergeben sich für $R = 50 \ \rm Ω$, $L = 25\ \rm | + | Im rechten Gleichungsteil ist die Übertragungsfunktion $H_{\rm L}(p)$ in Pol–Nullstellen–Notation angegeben. Durch Koeffizientenvergleich ergeben sich für $R = 50 \ \rm Ω$, $L = 25\ \rm µ H$ und $C = 62.5 \ \rm nF$ folgende Werte: |
*die Konstante $K = R/L = 2 · 10^6 \cdot 1/{\rm s}$, | *die Konstante $K = R/L = 2 · 10^6 \cdot 1/{\rm s}$, | ||
*die Nullstelle $p_o = –1/(RC) = –0.32 · 10^6 \cdot 1/{\rm s},$ | *die Nullstelle $p_o = –1/(RC) = –0.32 · 10^6 \cdot 1/{\rm s},$ | ||
*die beiden Pole $p_{x1}$ und $p_{x2}$ als Lösung der Gleichung | *die beiden Pole $p_{x1}$ und $p_{x2}$ als Lösung der Gleichung | ||
− | $$p^2 + \frac {R} {L}\cdot p + \frac{1}{LC} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -\frac {R} {2L}\pm \sqrt{\frac | + | :$$p^2 + \frac {R} {L}\cdot p + \frac{1}{LC} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -\frac {R} {2L}\pm \sqrt{\frac |
− | {R^2} {4L^2}- \frac{1}{LC}}$$ | + | {R^2} {4L^2}- \frac{1}{LC} }$$ |
− | $$\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -10^6 \cdot {1}/{\rm s} \pm \sqrt{10^{12} \cdot {1} /{\rm s^2}-0.64 \cdot 10^{12} \cdot {1}/ {\rm s^2}} | + | :$$\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -10^6 \cdot {1}/{\rm s} \pm \sqrt{10^{12} \cdot {1} /{\rm s^2}-0.64 \cdot 10^{12} \cdot {1}/ {\rm s^2} }\hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm} p_{\rm x 1 }= -0.4 \cdot 10^6\cdot {1}/ {\rm s},\hspace{0.2cm}p_{\rm x 2 }= -1.6 \cdot 10^6\cdot {1}/ {\rm s} \hspace{0.05cm} .$$ | |
− | In der obigen Grafik ist rechts das Pol–Nullstellen–Diagramm angegeben. Die beiden Achsen bezeichnen den Real– und den Imaginärteil der Variablen $p$, jeweils normiert auf den Wert $10^6 · \rm 1/s\; (= 1/ | + | In der obigen Grafik ist rechts das Pol–Nullstellen–Diagramm angegeben. |
− | + | *Die beiden Achsen bezeichnen den Real– und den Imaginärteil der Variablen $p$, jeweils normiert auf den Wert $10^6 · \rm 1/s\; (= 1/µs)$. | |
+ | *Man erkennt nach dieser Normierung die Nullstelle bei $p_{\rm o} =\, –0.32$ als Kreis und die Polstellen bei $p_{\rm x1} = \,–0.4$ und $p_{\rm x2} = \,–1.6$ als Kreuze.}} | ||
==Eigenschaften der Pole und Nullstellen== | ==Eigenschaften der Pole und Nullstellen== | ||
<br> | <br> | ||
Die Übertragungsfunktion $H_{\rm L}(p)$ einer jeden realisierbaren Schaltung wird durch $Z$ Nullstellen und $N$ Pole zusammen mit einer Konstanten $K$ vollständig beschrieben, wobei folgende Einschränkungen gelten: | Die Übertragungsfunktion $H_{\rm L}(p)$ einer jeden realisierbaren Schaltung wird durch $Z$ Nullstellen und $N$ Pole zusammen mit einer Konstanten $K$ vollständig beschrieben, wobei folgende Einschränkungen gelten: | ||
− | *Es gilt stets $Z ≤ N$. Mit $Z > N$ | + | *Es gilt stets $Z ≤ N$. Mit $Z > N$ wäre im Grenzfall für $p → ∞$ (also für sehr hohe Frequenzen) auch die $p$–Übertragungsfunktion „unendlich groß”. |
*Die Nullstellen $p_{\rm oi}$ und die Pole $p_{\rm xi}$ sind im allgemeinen komplex und weisen wie $p$ die Einheit $\rm 1/s$ auf. Gilt $Z < N$, so besitzt auch die Konstante $K$ eine Einheit. | *Die Nullstellen $p_{\rm oi}$ und die Pole $p_{\rm xi}$ sind im allgemeinen komplex und weisen wie $p$ die Einheit $\rm 1/s$ auf. Gilt $Z < N$, so besitzt auch die Konstante $K$ eine Einheit. | ||
*Die Pole und Nullstellen können reell sein, wie im letzten Beispiel gezeigt. Sind sie komplex, so treten immer zwei konjugiert–komplexe Polstellen bzw. zwei konjugiert–komplexe Nullstellen auf, da $H_{\rm L}(p)$ stets eine reelle gebrochen–rationale Funktion darstellt. | *Die Pole und Nullstellen können reell sein, wie im letzten Beispiel gezeigt. Sind sie komplex, so treten immer zwei konjugiert–komplexe Polstellen bzw. zwei konjugiert–komplexe Nullstellen auf, da $H_{\rm L}(p)$ stets eine reelle gebrochen–rationale Funktion darstellt. | ||
*Alle Pole liegen in der linken Halbebene oder – als Grenzfall – auf der imaginären Achse. Diese Eigenschaft ergibt sich aus der erforderlichen und vorausgesetzten Kausalität zusammen mit dem [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Einige_Ergebnisse_der_Funktionentheorie|Hauptsatz der Funktionstheorie]], der im nächsten Kapitel angegeben wird. | *Alle Pole liegen in der linken Halbebene oder – als Grenzfall – auf der imaginären Achse. Diese Eigenschaft ergibt sich aus der erforderlichen und vorausgesetzten Kausalität zusammen mit dem [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Einige_Ergebnisse_der_Funktionentheorie|Hauptsatz der Funktionstheorie]], der im nächsten Kapitel angegeben wird. | ||
− | *Nullstellen können sowohl in der linken als auch in der rechten $p$–Halbebene auftreten oder auch auf der imaginären Achse. Ein Beispiel für Nullstellen in der rechten Halbebene findet man in der [[Aufgaben:3.4Z_Verschiedene_Allpässe| | + | *Nullstellen können sowohl in der linken als auch in der rechten $p$–Halbebene auftreten oder auch auf der imaginären Achse. Ein Beispiel für Nullstellen in der rechten Halbebene findet man in der [[Aufgaben:3.4Z_Verschiedene_Allpässe|Aufgabe 3.4Z]], die sich mit Allpässen beschäftigt. |
*Bei den so genannten ''Minimum–Phasen–Systemen'' sind in der rechten $p$–Halbebene nicht nur Pole verboten, sondern auch Nullstellen. Der Realteil aller Singularitäten ist hier nie positiv. | *Bei den so genannten ''Minimum–Phasen–Systemen'' sind in der rechten $p$–Halbebene nicht nur Pole verboten, sondern auch Nullstellen. Der Realteil aller Singularitäten ist hier nie positiv. | ||
Zeile 120: | Zeile 136: | ||
Diese Eigenschaften werden nun an drei Beispielen verdeutlicht. | Diese Eigenschaften werden nun an drei Beispielen verdeutlicht. | ||
− | {{Beispiel} | + | {{GraueBox|TEXT= |
+ | $\text{Beispiel 3:}$ | ||
Ausgehend von der bereits im letzten Abschnitt betrachteten [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion#Pol.E2.80.93Nullstellen.E2.80.93Darstellung_von_Schaltungen|Vierpolschaltung]] $(L$ im Längszweig, $R$ und $C$ im Querzweig) können die charakteristischen Größen der Übertragungsfunktion wie folgt angegeben werden: | Ausgehend von der bereits im letzten Abschnitt betrachteten [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion#Pol.E2.80.93Nullstellen.E2.80.93Darstellung_von_Schaltungen|Vierpolschaltung]] $(L$ im Längszweig, $R$ und $C$ im Querzweig) können die charakteristischen Größen der Übertragungsfunktion wie folgt angegeben werden: | ||
− | $$K = 2A, \hspace{0.2cm}p_{\rm x 1,\hspace{0.05cm}2 }= -A \pm \sqrt{A^2-B^2}, \hspace{0.2cm}p_{\rm o }= - \frac{B^2}{2A} \hspace{0.05cm} \hspace{0.2cm} {\rm mit } \hspace{0.2cm} A = \frac {R} {2L}, \hspace{0.2cm}B = \frac{1}{\sqrt{LC}} \hspace{0.05cm}.$$ | + | :$$K = 2A, \hspace{0.2cm}p_{\rm x 1,\hspace{0.05cm}2 }= -A \pm \sqrt{A^2-B^2}, \hspace{0.2cm}p_{\rm o }= - \frac{B^2}{2A} \hspace{0.05cm} \hspace{0.2cm} {\rm mit } \hspace{0.2cm} A = \frac {R} {2L}, \hspace{0.2cm}B = \frac{1}{\sqrt{LC} } \hspace{0.05cm}.$$ |
− | Die | + | Die Grafik zeigt drei verschiedene Diagramme mit unterschiedlichen Kapazitätswerten $C$. Es gilt stets $R = 50 \ \rm Ω$ und $L = 25 \ \rm µ H$. Die Achsen sind auf die Variable $A = R/(2L) = 10^6 · \rm 1/s$ normiert, und der konstante Faktor ist jeweils $K = 2A = 2 · 10^6 · \rm 1/s.$ |
− | [[Datei:P_ID2837__LZI_T_3_2_S5_neu.png|frame|Lage der Nullstelle und der Pole für Z = 1 und N = 2|class=fit]] | + | [[Datei:P_ID2837__LZI_T_3_2_S5_neu.png|center|frame|Lage der Nullstelle und der Pole für Z = 1 und N = 2|class=fit]] |
− | + | *Für $B < A$ erhält man '''zwei reelle Pole''' und eine Nullstelle rechts von $–A/2$. Für $C = 62.5 \ \rm nF$ ergibt sich gemäß dem linken Diagramm: | |
− | *Für $B < A$ erhält man '''zwei reelle Pole''' und eine Nullstelle rechts von $–A/2$. | + | :$$ {B}/ {A}= 0.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1}/A = -0.4 , \hspace{0.2cm}p_{\rm x 2}/A= -1.6 , \hspace{0.2cm}p_{\rm o}/A= -0.32 \hspace{0.05cm} .$$ |
− | $$ {B}/ {A}= 0.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1}/A = -0.4 , \hspace{0.2cm}p_{\rm x 2}/A= -1.6 , \hspace{0.2cm}p_{\rm o}/A= -0.32 \hspace{0.05cm} .$$ | + | *Für $B > A$ ergeben sich '''zwei konjugiert–komplexe Pole''' und eine Nullstelle links von $–A/2$, wie im rechten Diagramm für $C = 8 \ \rm nF$: |
− | *Für $B > A$ ergeben sich '''zwei konjugiert–komplexe Pole''' und eine Nullstelle links von $–A/2$, | + | :$${B}/ {A}= \sqrt{5} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }/A= -1\pm {\rm j}\cdot 2,\hspace{0.2cm}p_{\rm o}/A\approx -2.5 \hspace{0.05cm} .$$ |
− | $${B}/ {A}= \sqrt{5} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }/A= -1\pm {\rm j}\cdot 2,\hspace{0.2cm}p_{\rm o}/A\approx -2.5 \hspace{0.05cm} .$$ | + | *Der Grenzfall $A = B$ führt zu '''einer reellen doppelten Polstelle''' und einer Nullstelle bei $– A/2$ (mittleres Diagramm, gültig für $C = 400 \ \rm nF$): |
− | *Der Grenzfall $A = B$ führt zu '''einer reellen doppelten Polstelle''' und einer Nullstelle bei $– A/2$ ( | + | :$$ {B}/ {A}= 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1}/A= p_{\rm x 2}/A= -1, \hspace{0.2cm}p_{\rm o}/A= -0.5 \hspace{0.05cm} .$$ |
− | $$ {B}/ {A}= 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1}/A= p_{\rm x 2}/A= -1, \hspace{0.2cm}p_{\rm o}/A= -0.5 \hspace{0.05cm} .$$ | ||
− | Die Impulsantworten ergeben sich entsprechend dem | + | Die Impulsantworten $h(t)$ ergeben sich entsprechend dem folgenden Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]] wie folgt: |
*Bei der linken Konstellation ist $h(t)$ [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Aperiodisch_abklingende_Impulsantwort|aperiodisch abklingend]]. | *Bei der linken Konstellation ist $h(t)$ [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Aperiodisch_abklingende_Impulsantwort|aperiodisch abklingend]]. | ||
*Bei der rechten Konstellation ist $h(t)$ [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Ged.C3.A4mpft_oszillierende_Impulsantwort|gedämpft oszillierend]]. | *Bei der rechten Konstellation ist $h(t)$ [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Ged.C3.A4mpft_oszillierende_Impulsantwort|gedämpft oszillierend]]. | ||
− | *Bei der mittleren Konstellation spricht man vom [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Aperiodischer_Grenzfall|aperiodischen Grenzfall]]. | + | *Bei der mittleren Konstellation spricht man vom [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Aperiodischer_Grenzfall|aperiodischen Grenzfall]]. }} |
− | |||
==Grafische Ermittlung von Dämpfung und Phase== | ==Grafische Ermittlung von Dämpfung und Phase== | ||
<br> | <br> | ||
Gegeben sei die $p$–Übertragungsfunktion in der Pol–Nullstellen–Notation: | Gegeben sei die $p$–Übertragungsfunktion in der Pol–Nullstellen–Notation: | ||
− | $$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z (p - p_{\rm o i})} {\prod\limits_{i=1}^N (p - p_{\rm x i})}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot ... \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot ... \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} | + | :$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z (p - p_{\rm o i})} {\prod\limits_{i=1}^N (p - p_{\rm x i})}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} |
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | Zur herkömmlichen Übertragungsfunktion bzw. zum Frequenzgang $H(f)$ kommt man, indem man das Argument $p$ | + | Zur herkömmlichen Übertragungsfunktion bzw. zum Frequenzgang $H(f)$ kommt man, indem man das Argument $p$ von $H_{\rm L}(p)$ durch ${\rm j} \cdot 2πf$ ersetzt: |
− | $$H(f)= K \cdot \frac {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 2})\cdot ... \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} \hspace{-0.03cm} Z})} {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 2})\cdot ... \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$ | + | :$$H(f)= K \cdot \frac {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 2})\cdot \text{...} \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} \hspace{-0.03cm} Z})} {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 2})\cdot \text{...}\cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$ |
Wir betrachten nun eine feste Frequenz $f$ und beschreiben die Abstände und Winkel aller Nullstellen durch Vektoren: | Wir betrachten nun eine feste Frequenz $f$ und beschreiben die Abstände und Winkel aller Nullstellen durch Vektoren: | ||
− | $$R_{ {\rm o} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} i}= |R_{{\rm o} i}| \cdot {\rm | + | [[Datei:P_ID1761__LZI_T_3_2_S6_neu.png |right|frame|Ausgangsdiagramm zur Berechnung von Dämpfung und Phase|class=fit]] |
− | \hspace{0.3cm}i= 1, ... , Z \hspace{0.05cm} .$$ | + | :$$R_{ {\rm o} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} i}= |R_{{\rm o} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm o} i} }, |
+ | \hspace{0.3cm}i= 1, \text{...}\ , Z \hspace{0.05cm} .$$ | ||
In gleicher Weise gehen wir für die Polstellen vor: | In gleicher Weise gehen wir für die Polstellen vor: | ||
− | $$R_{ {\rm x} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} i}= |R_{ {\rm x} i}| \cdot {\rm | + | :$$R_{ {\rm x} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} i}= |R_{ {\rm x} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm x} i} }, \hspace{0.3cm}i= 1, \text{...}\ , N \hspace{0.05cm} .$$ |
+ | |||
+ | Die Grafik zeigt die Beträge und Phasenwinkel für ein System | ||
+ | *mit $Z = 2$ Nullstellen in der rechten Halbebene | ||
+ | *und $N = 2$ Polstellen in der linken Halbebene. | ||
+ | |||
− | + | Zu berücksichtigen ist zudem die Konstante $K$. | |
Mit dieser Vektordarstellung kann für den Frequenzgang geschrieben werden: | Mit dieser Vektordarstellung kann für den Frequenzgang geschrieben werden: | ||
− | $$H(f)= K \cdot \frac {|R_{ {\rm o} 1}| \cdot |R_{ {\rm o} 2}|\cdot ... \cdot |R_{ {\rm o} \hspace{-0.03cm} Z}|} {|R_{ {\rm x} 1}| \cdot |R_{ {\rm x} 2}|\cdot ... \cdot |R_{ {\rm x} \hspace{-0.03cm} N}|} \cdot {\rm e^{\hspace{0.03cm}{\rm j} \hspace{0.05cm}\cdot [ \phi_{ {\rm o} 1}\hspace{0.1cm}+ \hspace{0.1cm}\phi_{ {\rm o} 2} \hspace{0.1cm}+ \hspace{0.1cm}\hspace{0.1cm}... \hspace{0.1cm} + \hspace{0.1cm}\phi_{ {\rm o} \hspace{-0.03cm}{\it Z}}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 1}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 2} \hspace{0.1cm}- \hspace{0.1cm}... \hspace{0.1cm} | + | :$$H(f)= K \cdot \frac {|R_{ {\rm o} 1}| \cdot |R_{ {\rm o} 2}|\cdot ... \cdot |R_{ {\rm o} \hspace{-0.03cm} Z}|} {|R_{ {\rm x} 1}| \cdot |R_{ {\rm x} 2}|\cdot \text{...} \cdot |R_{ {\rm x} \hspace{-0.03cm} N}|} \cdot {\rm e^{\hspace{0.03cm}{\rm j} \hspace{0.05cm}\cdot [ \phi_{ {\rm o} 1}\hspace{0.1cm}+ \hspace{0.1cm}\phi_{ {\rm o} 2} \hspace{0.1cm}+ \hspace{0.1cm}\hspace{0.1cm}\text{...}. \hspace{0.1cm} + \hspace{0.1cm}\phi_{ {\rm o} \hspace{-0.03cm}{\it Z}}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 1}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 2} \hspace{0.1cm}- \hspace{0.1cm}... \hspace{0.1cm} |
- \hspace{0.1cm} \phi_{ {\rm x} \hspace{-0.03cm}{\it N} }]} } \hspace{0.05cm} .$$ | - \hspace{0.1cm} \phi_{ {\rm x} \hspace{-0.03cm}{\it N} }]} } \hspace{0.05cm} .$$ | ||
− | + | Stellt man $H(f)$ durch die Dämpfungsfunktion $a(f)$ und die Phasenfunktion $b(f)$ nach der allgemein gültigen Beziehung $H(f) = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}$ dar, so erhält man durch den Vergleich mit der obigen Gleichung das folgende Ergebnis: | |
− | + | *Bei geeigneter Normierung aller dimensionsbehafteten Größen gilt für die Dämpfung in Neper ($1 \ \rm Np$ entspricht $8.686 \ \rm dB$): | |
− | + | :$$a(f) = -{\rm ln} \hspace{0.1cm} K + \sum \limits_{i=1}^N {\rm ln} \hspace{0.1cm} |R_{ {\rm x} i}|- \sum \limits_{i=1}^Z {\rm ln} \hspace{0.1cm} |R_{ {\rm o} i}| \hspace{0.05cm} .$$ | |
− | |||
− | Stellt man $H(f)$ durch die | ||
− | |||
− | dar, so erhält man durch den Vergleich mit der obigen Gleichung das folgende Ergebnis: | ||
− | * | ||
− | $$a(f) = -{\rm ln} \hspace{0.1cm} K + \sum \limits_{i=1}^N {\rm ln} \hspace{0.1cm} |R_{ {\rm x} i}|- \sum \limits_{i=1}^Z {\rm ln} \hspace{0.1cm} |R_{ {\rm o} i}| \hspace{0.05cm} .$$ | ||
*Die Phasenfunktion in Radian (rad) ergibt sich entsprechend der oberen Skizze zu | *Die Phasenfunktion in Radian (rad) ergibt sich entsprechend der oberen Skizze zu | ||
− | $$b(f) = \phi_K + \sum \limits_{i=1}^N \phi_{ {\rm x} i}- \sum \limits_{i=1}^Z \phi_{ {\rm o} i}\hspace{0.2cm}{\rm mit} \hspace{0.2cm} \phi_K = \left\{ \begin{array}{c} 0 \\ \pi \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c} { K > 0\hspace{0.05cm},} \\ { K <0\hspace{0.05cm}.} \end{array}$$ | + | :$$b(f) = \phi_K + \sum \limits_{i=1}^N \phi_{ {\rm x} i}- \sum \limits_{i=1}^Z \phi_{ {\rm o} i}\hspace{0.2cm}{\rm mit} \hspace{0.2cm} \phi_K = \left\{ \begin{array}{c} 0 \\ \pi \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c} { K > 0\hspace{0.05cm},} \\ { K <0\hspace{0.05cm}.} \end{array}$$ |
− | {{Beispiel} | + | {{GraueBox|TEXT= |
+ | $\text{Beispiel 3:}$ | ||
Die Grafik verdeutlicht die Berechnung | Die Grafik verdeutlicht die Berechnung | ||
*der Dämpfungsfunktion $a(f)$ ⇒ roter Kurvenverlauf, und | *der Dämpfungsfunktion $a(f)$ ⇒ roter Kurvenverlauf, und | ||
− | *der Phasenfunktion $b(f)$ ⇒ roter Kurvenverlauf | + | *der Phasenfunktion $b(f)$ ⇒ roter Kurvenverlauf}} |
eines Vierpols, der durch den Faktor $K = 1.5$, eine Nullstelle bei $–3$ und zwei Pole bei $–1 \pm {\rm j} · 4$ festliegt. Die angegebenen Zahlenwerte gelten für die Frequenz $2πf = 3$: | eines Vierpols, der durch den Faktor $K = 1.5$, eine Nullstelle bei $–3$ und zwei Pole bei $–1 \pm {\rm j} · 4$ festliegt. Die angegebenen Zahlenwerte gelten für die Frequenz $2πf = 3$: | ||
Zeile 185: | Zeile 201: | ||
[[Datei:P_ID1762__LZI_T_3_2_S6b_neu.png |frame| Zur Berechnung der Dämpfungs– und Phasenfunktion|class=fit]] | [[Datei:P_ID1762__LZI_T_3_2_S6b_neu.png |frame| Zur Berechnung der Dämpfungs– und Phasenfunktion|class=fit]] | ||
− | Die Grafik ist ein Bildschirmabzug des Interaktionsmoduls [[Kausale Systeme & Laplace–Transformation]]. | + | Die Grafik ist ein Bildschirmabzug des Interaktionsmoduls [[Kausale Systeme & Laplace–Transformation]].}} |
− | |||
− | |||
==Aufgaben zum Kapitel== | ==Aufgaben zum Kapitel== |
Version vom 14. März 2018, 11:23 Uhr
Inhaltsverzeichnis
Betrachtetes Systemmodell
Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort $h(t)$, an dessen Eingang das Signal $x(t)$ anliegt. Das Ausgangssignal $y(t)$ ergibt sich dann als das Faltungsprodukt $x(t) ∗ h(t)$.
Bei akausalen Systemen und Signalen muss zur Beschreibung des Spektralverhaltens stets das erste Fourierintegral angewendet werden, und es gilt für das Ausgangsspektrum:
- $$Y(f) = X(f) \cdot H(f) \hspace{0.05cm}.$$
Das Fourierintegral besitzt auch für kausale Systeme und Signale, also unter der Voraussetzung
- $$x(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0\hspace{0.05cm},\hspace{0.2cm} h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} y(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}$$
weiterhin Gültigkeit. In diesem Fall ergeben sich aber durch Anwendung der Laplace–Transformation unter Beachtung gewisser Restriktionen wesentliche Vorteile:
- Die so behandelten Systeme sind stets durch eine Schaltung realisierbar. Der Entwickler kommt nicht in Versuchung, realitätsfremde Lösungen anzubieten.
- Die Laplace–Transformierte $X_{\rm L}(p)$ ist stets eine reelle Funktion der Spektralvariablen $p$. Dass sich diese Variable entsprechend $p = {\rm j} · 2πf$ aus der Multiplikation der physikalischen Kreisfrequenz $ω = 2πf$ mit der imaginären Einheit $\rm j$ ergibt, spielt für den Anwender keine Rolle.
- Die implizite Bedingung $x(t) = 0$ für $t < 0$ erlaubt speziell die Analyse des Einschwingverhaltens nach Einschaltvorgängen in einfacherer Weise als mit dem Fourierintegral.
Definition der Laplace–Transformation
Ausgehend vom ersten Fourierintegral,
- $$X(f) = \int_{-\infty}^{+\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm} 2\pi f t}}\hspace{0.1cm}{\rm d}t,$$
ergibt sich bei kausaler Zeitfunktion (⇒ $x(t) = 0$ für $t < 0$) mit der formalen Substitution $p = {\rm j} · 2πf$ direkt die Laplace–Transformation.
$\text{Definition:}$ Die Laplace–Transformierte einer kausalen Zeitfunktion $x(t)$ lautet:
- $$X_{\rm L}(p) = \int_{0}^{\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t} }\hspace{0.1cm}{\rm d}t\hspace{0.05cm}, \hspace{0.3cm}{\rm kurz}\hspace{0.3cm} X_{\rm L}(p) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad x(t)\hspace{0.05cm}.$$
Der Zusammenhang zwischen der Laplace–Transformierten $X_{\rm L}(p)$ und dem physikalischen Spektrum $X(f)$ ist häufig wie folgt gegeben:
- $$X(f) = X_{\rm L}(p) \Bigg |_{{\hspace{0.1cm} p\hspace{0.05cm}={\rm \hspace{0.05cm} j\hspace{0.05cm}2\pi \it f}}}.$$
Hat allerdings das Signal $x(t)$ periodische Anteile und beinhaltet damit die Spektralfunktion $X(f)$ zusätzliche Diracfunktionen, so ist diese Gleichung nicht anwendbar. In diesem Fall muss $p = α + {\rm j} · 2πf$ angesetzt werden und es ist dann der Grenzübergang $α → 0$ zu bilden.
$\text{Beispiel 1:}$ Wir gehen von der einseitig exponentiell abfallenden Zeitfunktion entsprechend der Skizze im Beispiel 1 des Kapitels „Real– und Imaginärteil einer kausalen Übertragungsfunktion” aus:
- $$x(t) = \left\{ \begin{array}{c} 0 \\ 0.5 \\ {\rm e}^{-t/T} \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c}{ t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$
Damit lautet die Laplace–Transformierte:
- $$X_{\rm L}(p) = \int_{0}^{\infty} {\rm e}^{-t/T} \cdot {\rm e}^{-pt} \hspace{0.1cm}{\rm d}t= \frac {1}{p + 1/T} \cdot {{\rm e}^{-(p+1/T) \hspace{0.05cm}\cdot \hspace{0.05cm}t}}\hspace{0.05cm}\Bigg \vert_{t \hspace{0.05cm}=\hspace{0.05cm} 0}^{\infty}= \frac {1}{p + 1/T} \hspace{0.05cm} .$$
Mit $p = {\rm j} · 2πf$ erhält man die herkömmliche Spektralfunktion bezüglich $f$:
- $$X(f) = \frac {1}{{\rm j \cdot 2\pi \it f} + 1/T} = \frac {T}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$
Betrachtet man dagegen den Frequenzgang eines Tiefpasses erster Ordnung, dessen Impulsantwort $h(t)$ sich gegenüber der obigen Zeitfunktion um den Faktor $1/T$ unterscheidet, so gilt für die Laplace–Transformierte bzw. die Fourier–Transformierte:
- $$H_{\rm L}(p)= \frac {1/T}{p + 1/T}= \frac {1}{1 + p \cdot T} \hspace{0.05cm} , \hspace{0.8cm}H(f) = \frac {1}{1+{\rm j \cdot 2\pi \it fT} } = \frac {1}{1+{\rm j} \cdot f/f_{\rm G} } \hspace{0.05cm} .$$
Häufig verwendet man dann anstelle des Parameters $T$ die 3dB–Grenzfrequenz $f_{\rm G} = 1/(2πT)$.
Einige wichtige Laplace–Korrespondenzen
Nachfolgend sind einige wichtige Laplace–Korrespondenzen zusammengestellt. Alle hier betrachteten Zeitsignale $x(t)$ sind als dimensionslos angenommen. Aus diesem Grund besitzt $X_{\rm L}(p)$ dann als Integral über die Zeit stets die Einheit „Sekunde”.
Die Laplace–Transformierte der Diracfunktion $δ(t)$ ist $X_{\rm L}(p) = 1$ (Diagramm $\rm A$). Durch Anwendung des Integrationssatzes erhält man $X_{\rm L}(p) = 1/p$ für die Sprungfunktion $γ(t)$ (Diagramm $\rm B$) und aus dieser durch Multiplikation mit $1/(pT)$ die Laplace–Transformierte der linear ansteigenden Funktion $x(t) = t/T$ für $t > 0$ (Diagramm $\rm C$).
Die Rechteckfunktion kann aus der Subtraktion zweier um $T$ auseinanderliegender Sprungfunktionen $γ(t)$ und $γ(t – T)$ erzeugt werden, so dass sich nach dem Verschiebungssatz die Laplace–Transformierte $X_{\rm L}(p) = (1 – {\rm e}^{–pT})/p$ ergibt (Diagramm $\rm D$). Durch Integration erhält man daraus die Rampenfunktion bzw. nach Multiplikation mit $1/(pT)$ deren Laplace–Transformierte (Diagramm $\rm E$).
Die Exponentialfunktion (Diagramm $\rm F$) wurde bereits auf der letzten Seite betrachtet. Mit dem Faktor $1/T$ beschreibt diese gleichzeitig die Impulsantwort eines Tiefpasses erster Ordnung. Durch Quadrierung erhält man die $p$–Spektralfunktion eines Tiefpasses zweiter Ordnung. Die zugehörige Zeitfunktion lautet $x(t) = t/T · {\rm e}^{–t/T}$ (Diagramm $\rm G$).
Neben der kausalen $\rm si$–Funktion (Diagramm $\rm H$) sind in der Tabelle auch die Laplace–Transformierten der kausalen Cosinus– und Sinusfunktion (Diagramme $\rm I$ und $\rm J$) angegeben, die sich zu $p/(p^2 + ω_0^2)$ bzw. $ω_0/(p^2 + ω_0^2)$ ergeben. Hierbei bezeichnet $ω_0 = 2πf_0 = 2π/T$ die so genannte Kreisfrequenz.
Pol–Nullstellen–Darstellung von Schaltungen
Ein jedes lineare zeitinvariante System (LZI), das durch eine Schaltung aus diskreten zeitkonstanten Bauelementen wie
- Widerständen $(R)$,
- Kapazitäten $(C)$,
- Induktivitäten $(L)$ und
- Verstärkerelementen
realisiert werden kann, besitzt eine gebrochen–rationale $p$–Übertragungsfunktion:
- $$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{...} + A_2 \cdot p^2 + A_1 \cdot p + A_0} {B_N \cdot p^N +\text{...} + B_2 \cdot p^2 + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)} \hspace{0.05cm} .$$
Alle Koeffizienten des Zählers ⇒ $A_Z, \text{...} , A_0$ und des Nenners ⇒ $B_N, \text{...} , B_0$ sind reell. Weiter bezeichnen
- $Z$ den Grad des Zählerpolynoms $Z(p)$,
- $N$ den Grad des Nennerpolynoms $N(p)$.
$\text{Äquivalente Pol–Nullstellen–Darstellung:}$ Für die $p$–Übertragungsfunktion kann auch geschieben werden:
- $$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i} } {\prod\limits_{i=1}^N p - p_{\rm x i} }= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
Die $Z + N + 1$ Parameter bedeuten:
- $K = A_Z/B_N$ ist ein konstanter Faktor. Gilt $Z = N$, so ist dieser dimensionslos.
- Die Lösungen der Gleichung $Z(p) = 0$ ergeben die $Z$ Nullstellen $p_{o1},\text{...}, p_{oZ}$ von $H_{\rm L}(p)$.
- Die Nullstellen des Nennerpolynoms $N(p)$ liefern die $N$ Polstellen (oder kurz Pole).
Die Umformung ist eindeutig. Dies erkennt man daran, dass die $p$–Übertragungsfunktion gemäß der ersten Gleichung ebenfalls nur durch $Z + N + 1$ freie Parameter bestimmt ist, da einer der Koeffizienten $A_Z, \text{...} , A_0, B_N, \text{...} , B_0$ ohne Änderung des Quotienten auf $1$ normiert werden kann.
$\text{Beispiel 2:}$ Wir betrachten den gezeichneten Vierpol mit einer Induktivität $L$ (komplexer Widerstand $pL$) im Längszweig sowie im Querzweig die Serienschaltung eines Ohmschen Widerstandes $R$ und einer Kapazität $C$ mit dem komplexen Widerstand $1/(pC)$.
Damit lautet die $p$–Übertragungsfunktion:
- $$H_{\rm L}(p)= \frac {Y_{\rm L}(p)} {X_{\rm L}(p)}= \frac {R + {1}/{(pC)} } {pL + R +{1}/{(pC)} }= \frac {1 + p \cdot{RC} } {1 + p \cdot{RC}+ p^2 \cdot{LC} } \hspace{0.05cm} .$$
Setzt man $p = {\rm j} · 2πf$ ein, so erhält man die Fourier–Übertragungsfunktion (bzw. den Frequenzgang). Dividiert man in obiger Gleichung Zähler und Nenner durch $LC$, so ergibt sich:
- $$H_{\rm L}(p)= \frac {R} {L}\cdot \frac {p + {1}/{(RC)} } {p^2 + {R}/ {L}\cdot p + {1}/{(LC)} }= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x 1})(p - p_{\rm x 2})} \hspace{0.05cm} .$$
Im rechten Gleichungsteil ist die Übertragungsfunktion $H_{\rm L}(p)$ in Pol–Nullstellen–Notation angegeben. Durch Koeffizientenvergleich ergeben sich für $R = 50 \ \rm Ω$, $L = 25\ \rm µ H$ und $C = 62.5 \ \rm nF$ folgende Werte:
- die Konstante $K = R/L = 2 · 10^6 \cdot 1/{\rm s}$,
- die Nullstelle $p_o = –1/(RC) = –0.32 · 10^6 \cdot 1/{\rm s},$
- die beiden Pole $p_{x1}$ und $p_{x2}$ als Lösung der Gleichung
- $$p^2 + \frac {R} {L}\cdot p + \frac{1}{LC} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -\frac {R} {2L}\pm \sqrt{\frac {R^2} {4L^2}- \frac{1}{LC} }$$
- $$\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -10^6 \cdot {1}/{\rm s} \pm \sqrt{10^{12} \cdot {1} /{\rm s^2}-0.64 \cdot 10^{12} \cdot {1}/ {\rm s^2} }\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm x 1 }= -0.4 \cdot 10^6\cdot {1}/ {\rm s},\hspace{0.2cm}p_{\rm x 2 }= -1.6 \cdot 10^6\cdot {1}/ {\rm s} \hspace{0.05cm} .$$
In der obigen Grafik ist rechts das Pol–Nullstellen–Diagramm angegeben.
- Die beiden Achsen bezeichnen den Real– und den Imaginärteil der Variablen $p$, jeweils normiert auf den Wert $10^6 · \rm 1/s\; (= 1/µs)$.
- Man erkennt nach dieser Normierung die Nullstelle bei $p_{\rm o} =\, –0.32$ als Kreis und die Polstellen bei $p_{\rm x1} = \,–0.4$ und $p_{\rm x2} = \,–1.6$ als Kreuze.
Eigenschaften der Pole und Nullstellen
Die Übertragungsfunktion $H_{\rm L}(p)$ einer jeden realisierbaren Schaltung wird durch $Z$ Nullstellen und $N$ Pole zusammen mit einer Konstanten $K$ vollständig beschrieben, wobei folgende Einschränkungen gelten:
- Es gilt stets $Z ≤ N$. Mit $Z > N$ wäre im Grenzfall für $p → ∞$ (also für sehr hohe Frequenzen) auch die $p$–Übertragungsfunktion „unendlich groß”.
- Die Nullstellen $p_{\rm oi}$ und die Pole $p_{\rm xi}$ sind im allgemeinen komplex und weisen wie $p$ die Einheit $\rm 1/s$ auf. Gilt $Z < N$, so besitzt auch die Konstante $K$ eine Einheit.
- Die Pole und Nullstellen können reell sein, wie im letzten Beispiel gezeigt. Sind sie komplex, so treten immer zwei konjugiert–komplexe Polstellen bzw. zwei konjugiert–komplexe Nullstellen auf, da $H_{\rm L}(p)$ stets eine reelle gebrochen–rationale Funktion darstellt.
- Alle Pole liegen in der linken Halbebene oder – als Grenzfall – auf der imaginären Achse. Diese Eigenschaft ergibt sich aus der erforderlichen und vorausgesetzten Kausalität zusammen mit dem Hauptsatz der Funktionstheorie, der im nächsten Kapitel angegeben wird.
- Nullstellen können sowohl in der linken als auch in der rechten $p$–Halbebene auftreten oder auch auf der imaginären Achse. Ein Beispiel für Nullstellen in der rechten Halbebene findet man in der Aufgabe 3.4Z, die sich mit Allpässen beschäftigt.
- Bei den so genannten Minimum–Phasen–Systemen sind in der rechten $p$–Halbebene nicht nur Pole verboten, sondern auch Nullstellen. Der Realteil aller Singularitäten ist hier nie positiv.
Diese Eigenschaften werden nun an drei Beispielen verdeutlicht.
$\text{Beispiel 3:}$ Ausgehend von der bereits im letzten Abschnitt betrachteten Vierpolschaltung $(L$ im Längszweig, $R$ und $C$ im Querzweig) können die charakteristischen Größen der Übertragungsfunktion wie folgt angegeben werden:
- $$K = 2A, \hspace{0.2cm}p_{\rm x 1,\hspace{0.05cm}2 }= -A \pm \sqrt{A^2-B^2}, \hspace{0.2cm}p_{\rm o }= - \frac{B^2}{2A} \hspace{0.05cm} \hspace{0.2cm} {\rm mit } \hspace{0.2cm} A = \frac {R} {2L}, \hspace{0.2cm}B = \frac{1}{\sqrt{LC} } \hspace{0.05cm}.$$
Die Grafik zeigt drei verschiedene Diagramme mit unterschiedlichen Kapazitätswerten $C$. Es gilt stets $R = 50 \ \rm Ω$ und $L = 25 \ \rm µ H$. Die Achsen sind auf die Variable $A = R/(2L) = 10^6 · \rm 1/s$ normiert, und der konstante Faktor ist jeweils $K = 2A = 2 · 10^6 · \rm 1/s.$
- Für $B < A$ erhält man zwei reelle Pole und eine Nullstelle rechts von $–A/2$. Für $C = 62.5 \ \rm nF$ ergibt sich gemäß dem linken Diagramm:
- $$ {B}/ {A}= 0.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1}/A = -0.4 , \hspace{0.2cm}p_{\rm x 2}/A= -1.6 , \hspace{0.2cm}p_{\rm o}/A= -0.32 \hspace{0.05cm} .$$
- Für $B > A$ ergeben sich zwei konjugiert–komplexe Pole und eine Nullstelle links von $–A/2$, wie im rechten Diagramm für $C = 8 \ \rm nF$:
- $${B}/ {A}= \sqrt{5} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }/A= -1\pm {\rm j}\cdot 2,\hspace{0.2cm}p_{\rm o}/A\approx -2.5 \hspace{0.05cm} .$$
- Der Grenzfall $A = B$ führt zu einer reellen doppelten Polstelle und einer Nullstelle bei $– A/2$ (mittleres Diagramm, gültig für $C = 400 \ \rm nF$):
- $$ {B}/ {A}= 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1}/A= p_{\rm x 2}/A= -1, \hspace{0.2cm}p_{\rm o}/A= -0.5 \hspace{0.05cm} .$$
Die Impulsantworten $h(t)$ ergeben sich entsprechend dem folgenden Kapitel Laplace–Rücktransformation wie folgt:
- Bei der linken Konstellation ist $h(t)$ aperiodisch abklingend.
- Bei der rechten Konstellation ist $h(t)$ gedämpft oszillierend.
- Bei der mittleren Konstellation spricht man vom aperiodischen Grenzfall.
Grafische Ermittlung von Dämpfung und Phase
Gegeben sei die $p$–Übertragungsfunktion in der Pol–Nullstellen–Notation:
- $$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z (p - p_{\rm o i})} {\prod\limits_{i=1}^N (p - p_{\rm x i})}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
Zur herkömmlichen Übertragungsfunktion bzw. zum Frequenzgang $H(f)$ kommt man, indem man das Argument $p$ von $H_{\rm L}(p)$ durch ${\rm j} \cdot 2πf$ ersetzt:
- $$H(f)= K \cdot \frac {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 2})\cdot \text{...} \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} \hspace{-0.03cm} Z})} {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 2})\cdot \text{...}\cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
Wir betrachten nun eine feste Frequenz $f$ und beschreiben die Abstände und Winkel aller Nullstellen durch Vektoren:
- $$R_{ {\rm o} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} i}= |R_{{\rm o} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm o} i} }, \hspace{0.3cm}i= 1, \text{...}\ , Z \hspace{0.05cm} .$$
In gleicher Weise gehen wir für die Polstellen vor:
- $$R_{ {\rm x} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} i}= |R_{ {\rm x} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm x} i} }, \hspace{0.3cm}i= 1, \text{...}\ , N \hspace{0.05cm} .$$
Die Grafik zeigt die Beträge und Phasenwinkel für ein System
- mit $Z = 2$ Nullstellen in der rechten Halbebene
- und $N = 2$ Polstellen in der linken Halbebene.
Zu berücksichtigen ist zudem die Konstante $K$.
Mit dieser Vektordarstellung kann für den Frequenzgang geschrieben werden:
- $$H(f)= K \cdot \frac {|R_{ {\rm o} 1}| \cdot |R_{ {\rm o} 2}|\cdot ... \cdot |R_{ {\rm o} \hspace{-0.03cm} Z}|} {|R_{ {\rm x} 1}| \cdot |R_{ {\rm x} 2}|\cdot \text{...} \cdot |R_{ {\rm x} \hspace{-0.03cm} N}|} \cdot {\rm e^{\hspace{0.03cm}{\rm j} \hspace{0.05cm}\cdot [ \phi_{ {\rm o} 1}\hspace{0.1cm}+ \hspace{0.1cm}\phi_{ {\rm o} 2} \hspace{0.1cm}+ \hspace{0.1cm}\hspace{0.1cm}\text{...}. \hspace{0.1cm} + \hspace{0.1cm}\phi_{ {\rm o} \hspace{-0.03cm}{\it Z}}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 1}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 2} \hspace{0.1cm}- \hspace{0.1cm}... \hspace{0.1cm} - \hspace{0.1cm} \phi_{ {\rm x} \hspace{-0.03cm}{\it N} }]} } \hspace{0.05cm} .$$
Stellt man $H(f)$ durch die Dämpfungsfunktion $a(f)$ und die Phasenfunktion $b(f)$ nach der allgemein gültigen Beziehung $H(f) = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}$ dar, so erhält man durch den Vergleich mit der obigen Gleichung das folgende Ergebnis:
- Bei geeigneter Normierung aller dimensionsbehafteten Größen gilt für die Dämpfung in Neper ($1 \ \rm Np$ entspricht $8.686 \ \rm dB$):
- $$a(f) = -{\rm ln} \hspace{0.1cm} K + \sum \limits_{i=1}^N {\rm ln} \hspace{0.1cm} |R_{ {\rm x} i}|- \sum \limits_{i=1}^Z {\rm ln} \hspace{0.1cm} |R_{ {\rm o} i}| \hspace{0.05cm} .$$
- Die Phasenfunktion in Radian (rad) ergibt sich entsprechend der oberen Skizze zu
- $$b(f) = \phi_K + \sum \limits_{i=1}^N \phi_{ {\rm x} i}- \sum \limits_{i=1}^Z \phi_{ {\rm o} i}\hspace{0.2cm}{\rm mit} \hspace{0.2cm} \phi_K = \left\{ \begin{array}{c} 0 \\ \pi \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c} { K > 0\hspace{0.05cm},} \\ { K <0\hspace{0.05cm}.} \end{array}$$
$\text{Beispiel 3:}$ Die Grafik verdeutlicht die Berechnung
- der Dämpfungsfunktion $a(f)$ ⇒ roter Kurvenverlauf, und
- der Phasenfunktion $b(f)$ ⇒ roter Kurvenverlauf
eines Vierpols, der durch den Faktor $K = 1.5$, eine Nullstelle bei $–3$ und zwei Pole bei $–1 \pm {\rm j} · 4$ festliegt. Die angegebenen Zahlenwerte gelten für die Frequenz $2πf = 3$: $$a \left [f = {3}/({2\pi}) \right ] = 0.453\,\,{\rm Np}= 3.953\,\,{\rm dB} \hspace{0.4cm}\Rightarrow \hspace{0.4cm}|H \left [f = {3}/({2\pi}) \right ]| = 0.636, \hspace{0.4cm} b\left [f = {3}/({2\pi}) \right ] = -8.1 \,\,^\circ \hspace{0.05cm} .$$
Die Herleitung dieser Zahlenwerte ist im grau hinterlegten Block verdeutlicht. Für den Betragsfrquenzgang $|H(f)|$ ⇒ blauer Kurvenverlaufvergibt sich ein bandpassähnlicher Verlauf mit $$|H(f = 0)| \approx 0.25, \hspace{0.4cm} |H(f = \frac{4}{2\pi})| \approx 0637,\hspace{0.4cm} |H(f \rightarrow \infty)|= 0 \hspace{0.05cm} .$$
Die Grafik ist ein Bildschirmabzug des Interaktionsmoduls Kausale Systeme & Laplace–Transformation.}}
Aufgaben zum Kapitel
Aufgabe 3.2: Laplace-Transformation
Zusatzaufgabe 3.2Z: Laplace und Fourier
Aufgabe 3.3: p-Übertragungsfunktion
Zusatzaufgabe 3.3Z: Hoch- undTiefpässe in p-Form
Aufgabe 3.4: Dämpfungs- und Phasenverlauf
Zusatzaufgabe 3.4Z: Verschiedene Allpässe