Stochastische Signaltheorie/Markovketten: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 122: Zeile 122:
 
==Stationäre Wahrscheinlichkeiten==
 
==Stationäre Wahrscheinlichkeiten==
 
<br>
 
<br>
Wichtige Eigenschaften von Zufallsprozessen sind  [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Station.C3.A4re_Zufallsprozesse|Stationarität]]  und [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Ergodische_Zufallsprozesse|Ergodizität]]. Diese Begriffe werden erst im vierten Kapitel &bdquo;Zufallsgrößen mit statistischen Bindungen&rdquo;  definiert, hier aber bereits vorausgreifend auf Markovketten angewandt.
+
Wichtige Eigenschaften von Zufallsprozessen sind  [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Station.C3.A4re_Zufallsprozesse|Stationarität]]  und [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Ergodische_Zufallsprozesse|Ergodizität]]. Obwohl diese Begriffe werden erst im vierten Kapitel &bdquo;Zufallsgrößen mit statistischen Bindungen&rdquo;  definiert werden, wenden wir sie hier bereits vorausgreifend auf Markovketten an.
  
{{Definition}}
+
{{BlaueBox|TEXT= 
Sind bei einer Markovkette neben den Übergangswahrscheinlichkeiten auch alle Ereigniswahrscheinlichkeiten unabhängig vom Zeitpunkt $ν$, so bezeichnet man sie als '''stationär''' (englisch: ''stationary''). Man verzichtet dann auf den Index $ν$ und schreibt im binären Fall:
+
$\text{Definition:}$&nbsp;
$${\rm Pr}(A_\nu ) = {\rm Pr}(A )  \hspace{0.5 cm} {\rm bzw.} \hspace{0.5 cm} {\rm Pr}(B_\nu ) = {\rm Pr}(B).$$
+
Sind bei einer Markovkette neben den Übergangswahrscheinlichkeiten auch alle Ereigniswahrscheinlichkeiten unabhängig von der Zeit $ν$, so bezeichnet man die Markovkette als '''stationär''' (englisch: ''stationary''). Man verzichtet dann auf den Index $ν$ und schreibt im binären Fall:
Diese Größen nennt man auch die '''ergodischen Wahrscheinlichkeiten''' der Markovkette.
+
:$${\rm Pr}(A_\nu ) = {\rm Pr}(A )  \hspace{0.5 cm} {\rm bzw.} \hspace{0.5 cm} {\rm Pr}(B_\nu ) = {\rm Pr}(B).$$
{{end}}
+
Diese Größen nennt man auch die '''ergodischen Wahrscheinlichkeiten''' der Markovkette.}}
  
  

Version vom 3. April 2018, 12:56 Uhr

Betrachtetes Szenario


Wir betrachten nun abschließend den Fall, dass man ein Zufallsexperiment fortlaufend durchführt und dass zu jedem diskreten Zeitpunkt $(ν = 1, 2, 3, \text{...})$ ein neues Ereignis $E_ν$ eintritt. Hierbei soll gelten:

$$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_\mu , \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_M \}.$$

Diese mathematisch nicht ganz saubere Nomenklatur bedeutet (siehe auch die folgende Grafik):

  • Die $M$ möglichen Ereignisse werden mit dem Laufindex $μ$ durchnummeriert.
  • Der Index $ν$ benennt die diskreten Zeitpunkte, zu denen Entscheidungen gefällt werden.
Mögliche Ereignisse und Ereignisfolge

Zur einfacheren Darstellung beschränken wir uns im Folgenden auf den Fall $M = 2$ mit der Grundmenge $G = \{ A, B \}$.

  • Wir berücksichtigen, dass die Wahrscheinlichkeit des Ereignisses $E_ν$ durchaus von allen vorherigen Ereignissen abhängen kann – also von den Ereignissen $E_{ν–1}, E_{ν–2}, E_{ν–3},$ usw.
  • Es bedeutet auch, dass wir eine Ereignisfolge mit inneren statistischen Bindungen betrachten.


Dieses Szenario ist ein Sonderfall eines zeit- und wertdiskreten Zufallsprozesses, der im Kapitel Zufallsprozesse  noch ausführlich behandelt wird.

$\text{Beispiel 1:}$  Aus einem Kartenstapel mit 32 Karten (darunter 4 Asse) werden nacheinander Karten gezogen. Mit den Ereignissen

  • $A :=$ „die gezogene Karte ist ein Ass”, und
  • $B = \overline{A}:=$ „die gezogene Karte ist kein Ass” lauten die Wahrscheinlichkeiten zum Zeitpunkt $ν = 1$:
$${\rm Pr} (A_{\rm 1}) ={4}/{32}= {1}/{8}, \hspace{0.5cm}{\rm Pr} (B_{\rm 1}) = {28}/{32}= {7}/{8}.$$

Die Wahrscheinlichkeit ${\rm Pr} (A_{\rm 2})$, dass als zweite Karte $(ν = 2)$ ein Ass gezogen wird, hängt nun davon ab,

  • ob zum Zeitpunkt $ν = 1$ ein Ass gezogen wurde ⇒ ${\rm Pr} (A_{\rm 2}) = 3/31 < 1/8$, oder
  • ob zum Zeitpunkt $ν = 1$ kein Ass gezogen wurde ⇒ ${\rm Pr} (A_{\rm 2}) = 4/31 > 1/8$.


Auch die Wahrscheinlichkeiten ${\rm Pr} (A_{\nu})$ zu späteren Zeitpunkten $ν$ hängen stets vom Eintreffen bzw. Nichteintreffen aller vorherigen Ereignisse $E_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} ,E_{ν–1}$ ab.

Allgemeine Definition einer Markovkette


In Sonderfällen, die allerdings sehr häufig vorkommen, kann das oben beschriebene Szenario durch eine Markovkette beschrieben werden.

Markovkette zweiter Ordnung

$\text{Definition:}$  Eine Markovkette $k$-ter Ordnung (englisch: Markov Chain) dient als Modell für zeit- und wertdiskrete Vorgänge, bei denen

  • die Ereigniswahrscheinlichkeiten zum Zeitpunkt $ν$  von den vorherigen Ereignissen $E_{ν–1}, \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_{ν–k}$ abhängen, und
  • durch $M^{k+1}$ bedingte Wahrscheinlichkeiten ausgedrückt werden können.


Für $M = 2$ gibt es deshalb $2^{k+1}$ solcher Wahrscheinlichkeiten. Mit $ E_{\nu }\in \{ A, B \}, \hspace {0.1cm}\text{...}\hspace {0.1cm}, E_{\nu { -k } } \in \{ A, B \}$ lauten diese:

$${\rm Pr} ( E_\nu \hspace {0.05cm}\vert \hspace {0.05cm}E_{\nu {\rm -1 } },\hspace {0.1cm}\text{...}\hspace {0.1cm}, E_{\nu { -k } }).$$

Das Schaubild verdeutlicht diesen Sachverhalt am Beispiel $k = 2$.


$\text{Beispiel 2:}$  Natürliche Sprachen sind oft durch Markovketten beschreibbar, wobei allerdings die Ordnung $k$ gegen Unendlich strebt. In diesem Beispiel werden Texte allerdings lediglich durch Markovketten zweiter Ordnung angenähert.

Synthetisch erzeugte Texte (deutsch und englisch)

Die Grafik zeigt beispielhaft zwei synthetisch erzeugte Texte:

  • Der linke Text wurde ausgehend von einer deutschen Buchvorlage mit Bindungen bis zu zweiter Ordnung synthetisch erzeugt.
  • Beim rechten Text wurde eine englische Vorlage verwendet.

Man erkennt trotz der Beschränkung $k = 2$ viele (kurze) deutsche bzw. englische Wörter und auch, dass deutsche Wörter im Mittel länger sind als englische. Es ergibt sich zwar kein sinnvoller Inhalt, aber die Struktur der jeweiligen Sprache ist erkennbar.

Markovkette erster Ordnung


Im Folgenden beschränken wir uns stets auf den Sonderfall $k =1$ .

$\text{Definition:}$  Bei einer Markovkette erster Ordnung (englisch: First Order Markov Chain) wird lediglich die statistische Bindung zum letzten Ereignis berücksichtigt, die in der Praxis meist auch am stärksten ist.

Eine binäre Markovkette erster Ordnung   ⇒   Grundmenge $G = \{ A, B \}$ weist zum Zeitpunkt $\nu$ folgende Ereigniswahrscheinlichkeiten auf:

$${\rm Pr}(A_\nu) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
$${\rm Pr}(B_\nu) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) .$$


Zu diesen Gleichungen ist anzumerken:

  • ${\rm Pr}(A_\nu)$ steht als Abkürzung für die Wahrscheinlichkeit, dass zur Zeit $ν$ das Ereignis $E_ν = A = \overline{B}$ auftritt, und es gilt ${\rm Pr}(B_\nu) = 1 - {\rm Pr}(A_\nu)$.
  • Zu jedem Zeitpunkt gibt es vier Übergangswahrscheinlichkeiten ${\rm Pr}(E_ν\hspace{0.05cm} |\hspace{0.05cm} E_{ν–1})$, von denen jedoch nur zwei unabhängig sind, denn es gilt:
$${\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) = 1 - {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}), \hspace{0.5cm}{\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) = 1 - {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}).$$
  • Durch Verallgemeinerung dieser letzten Aussage gelangt man zu dem Ergebnis, dass es bei einer Markovkette mit $M$ Ereignissen zu jedem Zeitpunkt $ν$ genau $M · (M – 1)$ voneinander unabhängige Übergangswahrscheinlichkeiten gibt.


$\text{Beispiel 3:}$  Mit den vorgegebenen Übergangswahrscheinlichkeiten ${\rm Pr}(A_ν\hspace{0.05cm}\vert\hspace{0.05cm} A_{ν–1}) = 0.2$ und ${\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 0.4$ sind auch die beiden anderen Übergangswahrscheinlichkeiten eindeutig festgelegt:

$${\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} A_{ν–1}) = 1- 0.2 = 0.8 \hspace{0.3cm}\text{und}\hspace{0.3cm} {\rm Pr}(A_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 1- 0.4 = 0.6.$$

Homogene Markovketten


Eine Anwendbarkeit der Markovketten auf praktische Probleme ist meist nur bei weiteren einschränkenden Voraussetzungen gegeben.

$\text{Definition:}$  Sind alle Übergangswahrscheinlichkeiten unabhängig vom betrachteten Zeitpunkt $ν$, so bezeichnet man die Markovkette als homogen (englisch: homogeneous). Im Fall $M = 2$ verwenden wir hierfür folgende Abkürzungen:

$${\rm Pr}(A \hspace{0.05cm} \vert \hspace{0.05cm}A) = {\rm Pr}(A_\nu \hspace{0.05cm}\vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(A \hspace{0.05cm} \vert\hspace{0.05cm}B) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) ,$$
$${\rm Pr}(B \hspace{0.05cm} \vert\hspace{0.05cm}A) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm}B) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) .$$


Damit lauten die Ereigniswahrscheinlichkeiten einer binären homogenen Markovkette, die absolute Wahrscheinlichkeiten darstellen im Gegensatz zu den bedingten Übergangswahrscheinlichkeiten :

Homogene Markovkette erster Ordnung
$${\rm Pr}(A_\nu) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
$${\rm Pr}(B_\nu) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) .$$

Auch aus dem Markovdiagramm kann man ablesen:

  • Die Summe der abgehenden Pfeile eines Ereignisses ist stets Eins:
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) =1,$$
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) =1.$$
  • Die Summen ${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)$ bzw. ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B)$ unterliegen dagegen keinen Einschränkungen.


Sie können das „Einschwingverhalten” der Ereigniswahrscheinlichkeiten einer solchen binären Markovkette mit dem interaktiven Applet Ereigniswahrscheinlichkeiten einer Markovkette erster Ordnung berechnen und anzeigen lassen.


Stationäre Wahrscheinlichkeiten


Wichtige Eigenschaften von Zufallsprozessen sind Stationarität und Ergodizität. Obwohl diese Begriffe werden erst im vierten Kapitel „Zufallsgrößen mit statistischen Bindungen” definiert werden, wenden wir sie hier bereits vorausgreifend auf Markovketten an.

$\text{Definition:}$  Sind bei einer Markovkette neben den Übergangswahrscheinlichkeiten auch alle Ereigniswahrscheinlichkeiten unabhängig von der Zeit $ν$, so bezeichnet man die Markovkette als stationär (englisch: stationary). Man verzichtet dann auf den Index $ν$ und schreibt im binären Fall:

$${\rm Pr}(A_\nu ) = {\rm Pr}(A ) \hspace{0.5 cm} {\rm bzw.} \hspace{0.5 cm} {\rm Pr}(B_\nu ) = {\rm Pr}(B).$$

Diese Größen nennt man auch die ergodischen Wahrscheinlichkeiten der Markovkette.


Stationäre Markovketten weisen die nachfolgend genannten Besonderheiten auf:

  • Zur Berechnung der ergodischen Wahrscheinlichkeiten einer binären Markovkette ( $M =$ 2) kann man folgende Gleichungen verwenden:
$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) ,$$
$${\rm Pr}(B) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) .$$
  • Da diese beiden Gleichungen linear voneinander abhängen, darf man nur eine davon benutzen. Als zweite Bestimmungsgleichung kann man beispielsweise ${\rm Pr}(A) + {\rm Pr}(B) = 1$ verwenden.
  • Aus diesen Gleichungen ergeben sich die ergodischen Wahrscheinlichkeiten zu
$${\rm Pr}(A) = \frac {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }\hspace{0.1cm}, \hspace{0.5cm}{\rm Pr}(B) = \frac {{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }.$$


Bei einer stationären Markovkette treten sehr lange nach Einschalten der Kette ( $ν → ∞$) stets die ergodischen Wahrscheinlichkeiten auf, unabhängig von den Startbedingungen ${\rm Pr}(A_0)$ und ${\rm Pr}(B_0) = 1 - {\rm Pr}(A_0)$.

Wir betrachten eine binäre Markovkette mit

  • den beiden Ereignissen $A$ und $B$ und
  • den Übergangswahrscheinlichkeiten ${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) = 0.4$ und ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = 0.8$.

Weiterhin setzen wir voraus, dass jede Realisierung dieser Kette zum Startzeitpunkt $ν = 0$ mit dem Ereignis $A$ beginnt. Man erhält dann die nachfolgend aufgelisteten Ereigniswahrscheinlichkeiten (mit drei Nachkommastellen):

Zum Einschwingen der Ereigniswahrscheinlichkeiten

Es handelt sich hier im strengen Sinne um eine nichtstationäre Markovkette, die jedoch schon nach kurzer Zeit (nahezu) eingeschwungen ist:

  • Zu späteren Zeitpunkten ( $ν > 5$) werden die Ereigniswahrscheinlichkeiten ${\rm Pr}(A_ν) = 0.25$ und ${\rm Pr}(B_ν) = 0.75$ nicht mehr gravierend verändert.
  • Aus der Angabe ${\rm Pr}(A_{ν=5}) = 0.250$ und ${\rm Pr}(B_{ν=5}) = 0.750$ sollte allerdings nicht geschlossen werden, dass die Markovkette zum Zeitpunkt $ν = 5$ schon vollkommen eingeschwungen ist. Die exakten Werte sind nämlich ${\rm Pr}(A_{ν=5}) = 0.25024$ und ${\rm Pr}(B_{ν=5}) = 0.74976$.

Matrix-Vektordarstellung

Homogene Markovketten können mit Vektoren und Matrizen sehr kompakt dargestellt werden. Dies empfiehlt sich insbesondere, wenn mehr als zwei Ereignisse betrachtet werden: $$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}...\hspace{0.1cm}, E_\mu , \hspace{0.1cm}...\hspace{0.1cm}, E_M \}.$$ Für die Matrix-Vektorendarstellung verwenden wir folgende Nomenklatur:

  • Die $M$ Wahrscheinlichkeiten zum Zeitpunkt $ν$ fasst man zu einem Spaltenvektor zusammen:
$${\mathbf{p}^{(\nu)}} = \left[ \begin{array}{c} {p_{\rm 1}}^{(\nu)} \\ \dots \\ {p_{M}}^{(\nu)} \end{array} \right] \hspace{0.5cm}{\rm mit} \hspace{0.5cm} {p_{\mu}}^{(\nu)} = {\rm Pr}(E_\nu = E_\mu ).$$
  • Die Übergangswahrscheinlichkeiten werden durch eine $M$ x $M$-Matrix ausgedrückt:
$${\mathbf{P}} =\left( p_{ij} \right) = \left[ \begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1M} \\ p_{21} & p_{22}& \cdots & p_{2M} \\ \dots & \dots & \dots & \dots \\ p_{M1} & p_{M2} & \cdots & p_{MM} \end{array} \right] \hspace{0.5cm}{\rm mit} \hspace{0.5cm} {p_{ij}} = {\rm Pr}(E_{\nu +1 } = E_j \hspace{0.05cm}| \hspace{0.05cm} E_{\nu } = E_i).$$


Zur Bezeichnung der Übergangswahrscheinlichkeiten

Die nebenstehende Abbildung verdeutlicht diese Nomenklatur am Beispiel $M = 2$.

Der neue Ereigniswahrscheinlichkeitsvektor nach einem Schritt lautet: $${\mathbf{p}^{(\nu + 1)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(\nu )}} .$$

${\mathbf{P}^{\rm T}}$ bezeichnet hierbei die transponierte Matrix zu P. Nach $n$ Schritten ergibt sich somit $${\mathbf{p}^{(\nu +{\it n})}} = \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} .$$

Im Grenzübergang ( $n → ∞$) erreicht man dann stets die Stationarität der Markovkette: $$\lim_{n \to\infty}\hspace{0.1cm}{\mathbf{p}^{(\nu + n)}} = \lim_{n \to\infty} \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} = {\mathbf{p}}_{\rm erg}= \left[ \begin{array}{c} {p_{\rm 1}} \\ \dots \\ {p_{M}} \end{array} \right] .$$

Multipliziert man die Übergangsmatrix ${\mathbf{P}}$ unendlich oft mit sich selbst und benennt das Ergebnis mit ${\mathbf{P}}_{\rm erg}$, so besteht die resultierende Matrix aus $M$ gleichen Zeilen: $${\mathbf{P}}_{\rm erg} = \lim_{n \to\infty} {\mathbf{P}}^n = \left[ \begin{array}{cccc} p_{1} & p_{2} & \cdots & p_{M} \\ p_{1} & p_{2}& \cdots & p_{M} \\ \dots & \dots & \dots & \dots \\ p_{1} & p_{2} & \cdots & p_{M} \end{array} \right] .$$ Die Wahrscheinlichkeiten $p_1, ... , p_M$ in jeder dieser Zeilen bezeichnet man als die ergodischen Wahrscheinlichkeiten .


Markovdiagramm mit drei Ereignissen

Wir betrachten eine Markovkette mit den Ereignissen $E_1, E_2$ und $E_3$. Die Grafik zeigt das Markovdiagramm, die Übergangsmatrix P und deren Potenzen. Im Markovdiagramm sind alle Übergangswahrscheinlichkeiten „1/2” blau eingezeichnet; grün kennzeichnet die Wahrscheinlichkeit „1/4”.

  • Beim Start ( $ν =0$) sind alle Ereignisse gleichwahrscheinlich.
  • Für den Zeitpunkt $ν = 1$ gilt dann:
$${\mathbf{p}^{(1)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(0 )}}= \left[ \begin{array}{ccc} 1/2 & 1/2& 1/2 \\ 1/4 & 0 & 1/2 \\ 1/4& 1/2& 0 \end{array} \right] \left[ \begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] .$$
Hieraus ist zu ersehen, dass man von der Matrix P durch den Austausch der Zeilen und Spalten zur transponierten Matrix ${\mathbf{P}^{\rm T}}$ kommt.
  • Zum Zeitpunkt $ν =2$ (und auch zu allen späteren Zeiten) ergeben sich die gleichen Wahrscheinlichkeiten:
$${\mathbf{p}^{(2)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(1 )}}= \left[ \begin{array}{ccc} 1/2 & 1/2& 1/2 \\ 1/4 & 0 & 1/2 \\ 1/4& 1/2& 0 \end{array} \right] \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] .$$
Das bedeutet: Die ergodischen Wahrscheinlichkeiten sind „1/2”, „1/4” und „1/4”.
  • Dieses Ergebnis hätte man auch direkt aus der ergodischen Matrix ablesen können:
$${\mathbf{P}}_{\rm erg} = \lim_{n \to\infty} {\mathbf{P}}^n = \left[ \begin{array}{ccc} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \end{array} \right] .$$
Diese ergibt sich durch fortlaufende Multiplikation der Übergangsmatrix mit sich selbst. Im obigen Bild sind die Potenzen $\mathbf{P}^2$ und $\mathbf{P}^3$ angegeben, die sich der Matrix $\mathbf{P}_{\rm erg}$ annähern.

Aufgaben zum Kapitel

Aufgabe 1.6:   Übergangswahrscheinlichkeiten

Zusatzaufgabe 1.6Z:   Ergodische Wahrscheinlichkeiten

Aufgabe 1.7:   Ternäre Markovkette

Zusatzaufgabe 1.7Z:   BARBARA-Generator