Aufgaben:Aufgabe 4.08Z: Fehlerwahrscheinlichkeit bei drei Symbolen: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 4.08Z Fehlerwahrscheinlichkeit bei drei Symbolen nach Aufgabe 4.08Z: Fehlerwahrscheinlichkeit bei drei Symbolen) |
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
||
Zeile 35: | Zeile 35: | ||
''Hinweise:'' | ''Hinweise:'' | ||
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]]. | * Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]]. | ||
− | + | ||
* Zur Vereinfachung der Schreibweise wird nachfolgend verwendet: | * Zur Vereinfachung der Schreibweise wird nachfolgend verwendet: | ||
:$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm} | :$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm} |
Version vom 29. Mai 2018, 13:03 Uhr
Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der Aufgabe 4.8:
- die $M = 3$ möglichen Sendesignale, nämlich
- $$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
- die $M = 3$ Entscheidungsgrenzen
- $$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
- $$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
- $$G_{12}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$
Die beiden Achsen des 2D–Signalraums sind hier vereinfachend mit $x$ und $y$ bezeichnet; eigentlich müsste hierfür $\varphi_1(t)/\sqrt {E}$ bzw. $\varphi_2(t)/\sqrt {E}$ geschrieben werden.
Diese Entscheidungsgrenzen sind optimal unter den Voraussetzungen
- gleichwahrscheinliche Symbolwahrscheinlichkeiten
- zirkulär–symmetrische WDF des Rauschens (z.B. AWGN).
In dieser Aufgabe betrachten wir dagegen für die Rausch–WDF eine zweidimensionale Gleichverteilung:
- $$\boldsymbol{ p }_{\boldsymbol{ n }} (x,\hspace{0.15cm} y) = \left\{ \begin{array}{c} K\\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm f\ddot{u}r} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}.\\ \end{array}$$
Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.
Hinweise:
- Die Aufgabe gehört zum Kapitel Approximation der Fehlerwahrscheinlichkeit.
- Zur Vereinfachung der Schreibweise wird nachfolgend verwendet:
- $$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm} y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$2A \cdot 2A \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$
Mit $A = 0.75$ ⇒ $2A = 3/2$ erhält man $K = 4/9 \ \underline {=0.444}$.
(2) In nebenstehender Grafik ist die Rauschkomponente $\boldsymbol{n}$ durch die Quadrate der Kantenlänge $1.5$ um die 2D–Signalraumpunkte $\boldsymbol{s}_i$ eingezeichnet. Man erkennt, dass keine Entscheidungsgrenze durch Rauschkomponenten überschritten wird. Daraus folgt: Die Symbolfehlerwahrscheinlichkeit ist unter den hier gegebenen Voraussetzungen $p_{\rm S}\ \underline { \equiv 0}$.
(3) Richtig sind die Aussagen 2 und 4, wie aus der unteren Grafik abgelesen werden kann:
- Die Nachricht $m_2$ kann nicht verfälscht werden, da das Quadrat um $\boldsymbol{s}_2$ vollständig im rechten unteren Quadranten und damit im Entscheidungsgebiet $I_2$ liegt.
- Ebenso wurde mit Sicherheit $m_2$ gesendet, wenn der Empfangswert im Entscheidungsgebiet $I_2$ liegt. Der Grund: Keines der Quadrate um $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ reicht bis in das Gebiet $I_2$ hinein.
- $m_0$ kann nur zu $m_1$ verfälscht werden. Die (bedingte) Verfälschungswahrscheinlichkeit ist gleich dem Verhältnis der Flächen des gelben Dreiecks (Fläche $1/16$) und des Quadrats (Fläche 4):
- $${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64} \hspace{0.05cm}.$$
- Aus Symmetriegründen gilt gleichermaßen:
- $${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64} \hspace{0.05cm}. $$
(4) Bei gleichwahrscheinlichen Symbolen erhält man für die (mittlere) Fehlerwahrscheinlichkeit:
- $$p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\right ]$$
- $$ \Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{1}/{64} + {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 1.04 \%} \hspace{0.05cm}.$$
(5) Nun ergibt sich eine kleinere mittlere Fehlerwahrscheinlichkeit, nämlich
- $$p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{4} \cdot {1}/{64} + {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.78 \% } \hspace{0.05cm}. $$
(6) Richtig ist JA:
- Beispielsweise ergäbe sich durch $I_1$: erster Quadrant, $I_0$: zweiter Quadrant, $I_2 \text{:} \ y < 0$ die Fehlerwahrscheinlichkeit Null.
- Das bedeutet, dass die vorgegebenen Grenzen nur bei zirkulär symmetrischer WDF des Rauschens optimal sind, zum Beispiel beim AWGN–Kanal.