Aufgaben:Aufgabe 2.4: Gleichgerichteter Cosinus: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 14: Zeile 14:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fourierreihe|Fourierreihe]].
 
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fourierreihe|Fourierreihe]].
*Eine kompakte Zusammenfassung der Thematik finden Sie im Lernvideo [[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]].
 
 
   
 
   
 
*Zur Lösung der Aufgabe können Sie das folgende bestimmte Integral benutzen ($n$ sei ganzzahlig):
 
*Zur Lösung der Aufgabe können Sie das folgende bestimmte Integral benutzen ($n$ sei ganzzahlig):
 
   
 
   
 
:$$\int ^{\pi /2}_{-\pi /2}\cos(u)\cdot\cos(2nu)\,{\rm d}u  =  (-1)^{n+1}\cdot\frac{2}{4n^2-1}.$$
 
:$$\int ^{\pi /2}_{-\pi /2}\cos(u)\cdot\cos(2nu)\,{\rm d}u  =  (-1)^{n+1}\cdot\frac{2}{4n^2-1}.$$
 +
 +
*Eine kompakte Zusammenfassung der Thematik finden Sie im Lernvideo [[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]].
  
  
Zeile 26: Zeile 27:
 
{Welche der folgenden Aussagen sind für das Signal $x(t)$ zutreffend?
 
{Welche der folgenden Aussagen sind für das Signal $x(t)$ zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Die Periodendauer ist  $T_0 = 100 \,\mu{\rm s}$.
+
+ Die Periodendauer ist  $T_0 = 100 \,µ{\rm s}$.
 
+ Der Gleichsignalkoeffizient ist $A_0 = 0$.
 
+ Der Gleichsignalkoeffizient ist $A_0 = 0$.
 
+ Von allen Cosinuskoeffizienten $A_n$ ist nur einer ungleich $0$.
 
+ Von allen Cosinuskoeffizienten $A_n$ ist nur einer ungleich $0$.
Zeile 34: Zeile 35:
 
{Wie groß ist die Periodendauer des Signals $y(t)$?
 
{Wie groß ist die Periodendauer des Signals $y(t)$?
 
|type="{}"}
 
|type="{}"}
$T_0\ = \ $ { 0.05 3% }   ${\rm ms}$
+
$T_0\ = \ $ { 50 3% }   ${\rm µs}$
  
 
{Berechnen Sie den Gleichsignalanteil des Signals $y(t)$.
 
{Berechnen Sie den Gleichsignalanteil des Signals $y(t)$.
Zeile 55: Zeile 56:
 
$\varepsilon_3(t= 0)\ = \ $  { 0.0125 3% } ${\rm V}$
 
$\varepsilon_3(t= 0)\ = \ $  { 0.0125 3% } ${\rm V}$
  
{Berechnen Sie nun den Fehler $\varepsilon_3(t= 25 \,\mu{\rm s})$ . Interpretieren Sie diesen Wert im Vergleich zum Ergebnis aus 6).
+
{Berechnen Sie nun den Fehler $\varepsilon_3(t= 25 \,µ{\rm s})$ . Interpretieren Sie diesen Wert im Vergleich zum Ergebnis aus 6).
 
|type="{}"}
 
|type="{}"}
$\varepsilon_3(t= 25 \,\mu{\rm s})\ = \ $  { 0.091 3% } ${\rm V}$
+
$\varepsilon_3(t= 25 \,µ{\rm s})\ = \ $  { 0.091 3% } ${\rm V}$
  
 
</quiz>
 
</quiz>
Zeile 65: Zeile 66:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig sind hier alle Lösungsvorschläge außer dem Vierten:
 
'''(1)'''&nbsp; Richtig sind hier alle Lösungsvorschläge außer dem Vierten:
*Aus der Signalfrequenz $f_0= 10\,\rm{kHz}$ folgt $T_0 = 1/f_0 = 100\,\mu\text{s}$.  
+
*Aus der Signalfrequenz $f_0= 10\,\rm{kHz}$ folgt $T_0 = 1/f_0 = 100\,&micro;\text{s}$.  
 
*Das Cosinussignal ist gleichsignalfrei ($A_0 = 0$) und wird durch einen einzigen Cosinuskoeffizienten – nämlich $A_1$ – vollständig beschrieben.  
 
*Das Cosinussignal ist gleichsignalfrei ($A_0 = 0$) und wird durch einen einzigen Cosinuskoeffizienten – nämlich $A_1$ – vollständig beschrieben.  
 
*Alle Sinuskoeffizienten  sind $B_n \equiv 0$, da $x(t)$ eine gerade Funktion ist.  
 
*Alle Sinuskoeffizienten  sind $B_n \equiv 0$, da $x(t)$ eine gerade Funktion ist.  
Zeile 71: Zeile 72:
  
  
'''(2)'''&nbsp; Aufgrund der Doppelweggleichrichtung ergibt sich für die Periodendauer nunmehr der halbe Wert: $T_0 = 50\,\mu\text{s} \hspace{0.1cm}\underline{= 0.05\,\text{ms}}$. <br>Bei allen nachfolgenden Punkten bezieht sich die Angabe $T_0$ auf diesen Wert, also auf die Periodendauer des Signals $y(t)$.
+
'''(2)'''&nbsp; Aufgrund der Doppelweggleichrichtung ergibt sich für die Periodendauer nunmehr der halbe Wert: $T_0 \hspace{0.1cm}\underline{= 50\,&micro;\text{s}}$. <br>Bei allen nachfolgenden Punkten bezieht sich die Angabe $T_0$ auf diesen Wert, also auf die Periodendauer des Signals $y(t)$.
  
  
'''(3)'''&nbsp; Im Bereich von $–T_0/2$ bis $+T_0/2 \ (–25\,\mu\text{s} \ \text{...}  +25\,\mu\text{s})$ ist $y(t) = x(t)$. Mit $f_x= 10\,\rm{kHz} = 1/(2T_0)$ gilt deshalb für diesen Abschnitt:
+
'''(3)'''&nbsp; Im Bereich von $–T_0/2$ bis $+T_0/2 \ (–25\,&micro;\text{s} \ \text{...}  +25\,&micro;\text{s})$ ist $y(t) = x(t)$. Mit $f_x= 10\,\rm{kHz} = 1/(2T_0)$ gilt deshalb für diesen Abschnitt:
 
   
 
   
:$$y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi{t}/{T_0}).$$
+
:$$y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).$$
  
 
Daraus ergibt sich für den Gleichsignalanteil:
 
Daraus ergibt sich für den Gleichsignalanteil:
 
   
 
   
:$$A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi{t}/{T_0})\,{\rm d}t.$$
+
:$$A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.$$
  
 
Mit der Substitution $u = \pi \cdot t/T_0$ erhält man schließlich:
 
Mit der Substitution $u = \pi \cdot t/T_0$ erhält man schließlich:
Zeile 94: Zeile 95:
 
\Rightarrow  \quad A_n  = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2  - 1} \right)}}.$$
 
\Rightarrow  \quad A_n  = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2  - 1} \right)}}.$$
  
Der Koeffizient $A_2$ ist damit gleich $-4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \,\text{V}}$.
+
Der Koeffizient $A_2$ ist damit gleich $-4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}$.
  
  
Zeile 101: Zeile 102:
 
:$$y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].$$
 
:$$y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].$$
  
Zum Zeitpunkt $t = 0$ ist $y_3(0) \approx$ 1.0125 V; damit ergibt sich der Fehler zu $\varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 ,\text{V}}$ .
+
Zum Zeitpunkt $t = 0$ ist $y_3(0) \approx$ 1.0125 V; damit ergibt sich der Fehler zu $\varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}}$ .
  
  
'''(7)'''&nbsp; Die Zeit $t = 25\,\mu\text{s}$  entspricht der halben Periodendauer des Signals $y(t)$. Hierfür gilt wegen $\omega_0 \cdot T_0 = 2\pi$:
+
'''(7)'''&nbsp; Die Zeit $t = 25\,&micro;\text{s}$  entspricht der halben Periodendauer des Signals $y(t)$. Hierfür gilt wegen $\omega_0 \cdot T_0 = 2\pi$:
 
   
 
   
 
:$$y_3(T_0/2)  = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]=  \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] =  \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.$$
 
:$$y_3(T_0/2)  = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]=  \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] =  \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.$$

Version vom 17. Juli 2018, 14:56 Uhr

Gleichgerichteter Cosinus

Ein Cosinussignal $x(t)$ mit der Amplitude $1\,\rm{V}$ und der Frequenz $f_0= 10\,\rm{kHz}$ wird an den Eingang eines Doppelweggleichrichters gelegt. An dessen Ausgang ergibt sich das Signal $y(t)$, das in der Grafik ebenfalls dargestellt ist.

Bei den Teilaufgaben (6) und (7) wird auch das Fehlersignal $\varepsilon_3(t) = y_3(t) - y(t)$ verwendet. Dieses beschreibt die Differenz zwischen der auf lediglich $N = 3$ Koeffizienten begrenzten Fourierreihe   ⇒   $y_3(t)$   und dem tatsächlichen Ausgangssignal $y(t)$.



Hinweise:

  • Zur Lösung der Aufgabe können Sie das folgende bestimmte Integral benutzen ($n$ sei ganzzahlig):
$$\int ^{\pi /2}_{-\pi /2}\cos(u)\cdot\cos(2nu)\,{\rm d}u = (-1)^{n+1}\cdot\frac{2}{4n^2-1}.$$


Fragebogen

1

Welche der folgenden Aussagen sind für das Signal $x(t)$ zutreffend?

Die Periodendauer ist $T_0 = 100 \,µ{\rm s}$.
Der Gleichsignalkoeffizient ist $A_0 = 0$.
Von allen Cosinuskoeffizienten $A_n$ ist nur einer ungleich $0$.
Von allen Sinuskoeffizienten $B_n$ ist nur einer ungleich $0$.
Die Fourierreihe $x_3(t)$ weicht nicht vom tatsächlichen Signal $x(t)$ ab.

2

Wie groß ist die Periodendauer des Signals $y(t)$?

$T_0\ = \ $

  ${\rm µs}$

3

Berechnen Sie den Gleichsignalanteil des Signals $y(t)$.

$A_0\ = \ $

  ${\rm V}$

4

Wie lauten die Sinuskoeffizienten $B_n$? Begründen Sie Ihr Ergebnis. Geben Sie zur Kontrolle den Koeffizienten $B_2$ ein.

$B_2\ = \ $

  ${\rm V}$

5

Berechnen Sie nun die Cosinuskoeffizienten $A_n$. Geben Sie zur Kontrolle den Koeffizienten $A_2$ ein.

$A_2\ = \ $

  ${\rm V}$

6

Geben Sie die Fourierreihe $y_3(t)$ analytisch an (Begrenzung auf je $N = 3$ Sinus– bzw. Cosinuskoeffizienten). Wie groß ist der Fehler zwischen dieser endlichen Fourierreihe und dem tatsächlichen Signalwert bei $t = 0$?

$\varepsilon_3(t= 0)\ = \ $

${\rm V}$

7

Berechnen Sie nun den Fehler $\varepsilon_3(t= 25 \,µ{\rm s})$ . Interpretieren Sie diesen Wert im Vergleich zum Ergebnis aus 6).

$\varepsilon_3(t= 25 \,µ{\rm s})\ = \ $

${\rm V}$


Musterlösung

(1)  Richtig sind hier alle Lösungsvorschläge außer dem Vierten:

  • Aus der Signalfrequenz $f_0= 10\,\rm{kHz}$ folgt $T_0 = 1/f_0 = 100\,µ\text{s}$.
  • Das Cosinussignal ist gleichsignalfrei ($A_0 = 0$) und wird durch einen einzigen Cosinuskoeffizienten – nämlich $A_1$ – vollständig beschrieben.
  • Alle Sinuskoeffizienten sind $B_n \equiv 0$, da $x(t)$ eine gerade Funktion ist.
  • Die Fourierreihendarstellung $x_3(t)$ bildet $x(t)$ fehlerfrei nach.


(2)  Aufgrund der Doppelweggleichrichtung ergibt sich für die Periodendauer nunmehr der halbe Wert: $T_0 \hspace{0.1cm}\underline{= 50\,µ\text{s}}$.
Bei allen nachfolgenden Punkten bezieht sich die Angabe $T_0$ auf diesen Wert, also auf die Periodendauer des Signals $y(t)$.


(3)  Im Bereich von $–T_0/2$ bis $+T_0/2 \ (–25\,µ\text{s} \ \text{...} +25\,µ\text{s})$ ist $y(t) = x(t)$. Mit $f_x= 10\,\rm{kHz} = 1/(2T_0)$ gilt deshalb für diesen Abschnitt:

$$y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).$$

Daraus ergibt sich für den Gleichsignalanteil:

$$A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.$$

Mit der Substitution $u = \pi \cdot t/T_0$ erhält man schließlich:

$$A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.$$

(4)  Da $y(–t) = y(t)$ gilt, sind alle Sinuskoeffizienten $B_n = 0$. Damit ist auch $B_2 \hspace{0.1cm}\underline{= 0}$.


(5)  Für die Koeffizienten $A_n$ gilt mit der Substitution $u = \pi \cdot t/T_0$ entsprechend dem angegebenen Integral:

$$A_n = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad \Rightarrow \quad A_n = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2 - 1} \right)}}.$$

Der Koeffizient $A_2$ ist damit gleich $-4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}$.


(6)  Für die endliche Fourierreihe mit $N = 3$ gilt allgemein:

$$y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].$$

Zum Zeitpunkt $t = 0$ ist $y_3(0) \approx$ 1.0125 V; damit ergibt sich der Fehler zu $\varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}}$ .


(7)  Die Zeit $t = 25\,µ\text{s}$ entspricht der halben Periodendauer des Signals $y(t)$. Hierfür gilt wegen $\omega_0 \cdot T_0 = 2\pi$:

$$y_3(T_0/2) = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]= \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] = \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.$$

Da $y(T_0/2) = 0$ ist, ergibt sich auch $\varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}$.

  • Dieser Fehler ist um mehr als den Faktor 7 größer als der Fehler bei $t = 0$, da das Signal $y(t)$ bei $t = T_0/2$ mehr hochfrequente Anteile besitzt (spitzförmiger Verlauf).
  • Wird gefordert, dass der Fehler $\varepsilon_3(T_0/2)$ kleiner als 0.01 sein soll, dann müssten mindestens 32 Fourierkoeffizienten berücksichtigt werden.