Stochastische Signaltheorie/Linearkombinationen von Zufallsgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 7: Zeile 7:
 
==Voraussetzungen und Mittelwerte==
 
==Voraussetzungen und Mittelwerte==
 
<br>
 
<br>
In diesem Kapitel &bdquo; Linearkombinationen von Zufallsgrößen &rdquo;  gehen wir von den folgenden Annahmen aus:  
+
Im gesamten Kapitel &bdquo; Linearkombinationen von Zufallsgrößen &rdquo;  gehen wir von den folgenden Annahmen aus:  
 
*Die Zufallsgrößen $u$ und $v$ seien jeweils mittelwertfrei &nbsp;  ⇒  &nbsp; $m_u = m_v = 0$ und zudem statistisch unabhängig voneinander  &nbsp; ⇒  &nbsp; $ρ_{uv} = 0$.  
 
*Die Zufallsgrößen $u$ und $v$ seien jeweils mittelwertfrei &nbsp;  ⇒  &nbsp; $m_u = m_v = 0$ und zudem statistisch unabhängig voneinander  &nbsp; ⇒  &nbsp; $ρ_{uv} = 0$.  
 
*Die beiden Zufallsgrößen $u$ und $v$ besitzen jeweils gleiche Streuung $σ$. Über die Art der Verteilung wird keine Aussage getroffen.  
 
*Die beiden Zufallsgrößen $u$ und $v$ besitzen jeweils gleiche Streuung $σ$. Über die Art der Verteilung wird keine Aussage getroffen.  
Zeile 21: Zeile 21:
 
==Resultierender Korrelationskoeffizient==
 
==Resultierender Korrelationskoeffizient==
 
<br>
 
<br>
Betrachten wir nun die '''Varianzen''' der Zufallsgrößen nach den Linearkombinationen. Für die Zufallsgröße $x$ gilt unabhängig vom Parameter $C$:
+
Betrachten wir nun die '''Varianzen''' der Zufallsgrößen nach den Linearkombinationen.  
:$$\sigma _x ^2 = {\rm E}[x ^{\rm 2}] = A^{\rm 2} \cdot {\rm E}[u^{\rm 2}]  + B^{\rm 2} \cdot {\rm E}[v^{\rm 2}] + {\rm 2} \cdot A \cdot B \cdot {\rm E}[u \cdot v].$$
+
*Für die Zufallsgröße $x$ gilt unabhängig vom Parameter $C$:
 +
:$$\sigma _x ^2 = {\rm E}\big[x ^{\rm 2}\big] = A^{\rm 2} \cdot {\rm E}\big[u^{\rm 2}\big]  + B^{\rm 2} \cdot {\rm E}\big[v^{\rm 2}\big] + {\rm 2} \cdot A \cdot B \cdot {\rm E}\big[u \cdot v\big].$$
  
Die Erwartungswerte von $u^2$ und $v^2$ sind definitionsgemäß jeweils gleich $σ^2$, weil $u$ und $v$ mittelwertfrei sind. Da $u$ und $v$ zudem als statistisch unabhängig vorausgesetzt werden, kann man für den Erwartungswert des Produktes auch schreiben:  
+
*Die Erwartungswerte von $u^2$ und $v^2$ sind definitionsgemäß jeweils gleich $σ^2$, weil $u$ und $v$ mittelwertfrei sind.  
:$${\rm E}[u \cdot v] = {\rm E}[u] \cdot {\rm E}[v] = m_u \cdot m_v = \rm 0.$$
+
*Da $u$ und $v$ zudem als statistisch unabhängig vorausgesetzt werden, kann man für den Erwartungswert des Produktes auch schreiben:  
Damit erhält man für die Varianzen der durch Linearkombinationen gebildeten Zufallsgrößen:
+
:$${\rm E}\big[u \cdot v\big] = {\rm E}\big[u\big] \cdot {\rm E}\big[v\big] = m_u \cdot m_v = \rm 0.$$
 +
*Damit erhält man für die Varianzen der durch Linearkombinationen gebildeten Zufallsgrößen:
 
:$$\sigma _x ^2 =(A^2 + B^2) \cdot \sigma ^2,$$
 
:$$\sigma _x ^2 =(A^2 + B^2) \cdot \sigma ^2,$$
 
:$$\sigma _y ^2 =(D^2 + E^2) \cdot \sigma ^2.$$
 
:$$\sigma _y ^2 =(D^2 + E^2) \cdot \sigma ^2.$$
Zeile 32: Zeile 34:
  
 
Die '''Kovarianz''' $μ_{xy}$ ist bei mittelwertfreien Zufallsgrößen $x$ und $y$  &nbsp; ⇒  &nbsp;  $C = F = 0$ identisch mit dem gemeinsamen Moment $m_{xy}$:
 
Die '''Kovarianz''' $μ_{xy}$ ist bei mittelwertfreien Zufallsgrößen $x$ und $y$  &nbsp; ⇒  &nbsp;  $C = F = 0$ identisch mit dem gemeinsamen Moment $m_{xy}$:
:$$\mu_{xy } = m_{xy } = {\rm E}[x \cdot y] = {\rm E}[(A \cdot u + B \cdot v)(D \cdot u + E \cdot v)].$$  
+
:$$\mu_{xy } = m_{xy } = {\rm E}\big[x \cdot y\big] = {\rm E}\big[(A \cdot u + B \cdot v)(D \cdot u + E \cdot v)\big].$$  
Beachten Sie hierbei, dass ${\rm E}[ \text{...} ]$ einen Erwartungswert bezeichnet, während $E$ eine Variable beschreibt. Nach Auswertung dieser Gleichung in analoger Weise zu oben folgt daraus:  
+
Beachten Sie hierbei, dass ${\rm E}\big[ \text{...} \big]$ einen Erwartungswert bezeichnet, während $E$ eine Variable beschreibt.
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp;Nach Auswertung dieser Gleichung in analoger Weise zu oben folgt daraus:  
 
:$$\mu_{xy } =  (A \cdot D + B \cdot E) \cdot  \sigma^{\rm 2 }
 
:$$\mu_{xy } =  (A \cdot D + B \cdot E) \cdot  \sigma^{\rm 2 }
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
\rho_{xy } = \frac{\rho_{xy }}{\sigma_x \cdot \sigma_y} =  \frac {A \cdot D + B \cdot E}{\sqrt{(A^{\rm 2}+B^{\rm 2})(D^{\rm 2}+E^{\rm 2})}}. $$
+
\rho_{xy } = \frac{\rho_{xy } }{\sigma_x \cdot \sigma_y} =  \frac {A \cdot D + B \cdot E}{\sqrt{(A^{\rm 2}+B^{\rm 2})(D^{\rm 2}+E^{\rm 2} ) } }. $$}}
 +
 
  
Schließen wir die Sonderfälle $A = B = 0$  (d. h. $x ≡ 0$ ) sowie $D = E = 0$  (d. h. $y ≡ 0$ ) aus, so liefert die Gleichung stets eindeutige Werte für den Korrelationskoeffizienten im Bereich $–1 ≤ ρ_{xy} ≤ +1$.
+
Wir schließen nun die Sonderfälle $A = B = 0$  (d. h. $x ≡ 0$ ) sowie $D = E = 0$  (d. h. $y ≡ 0$ ) aus. Dann liefert diese Gleichung stets eindeutige Werte für den Korrelationskoeffizienten im Bereich &nbsp;$–1 ≤ ρ_{xy} ≤ +1$.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
Zeile 45: Zeile 51:
 
*Nun hängt $x$ nur noch von $v$ und $y$ ausschließlich von $u$ ab.  
 
*Nun hängt $x$ nur noch von $v$ und $y$ ausschließlich von $u$ ab.  
 
*Da aber $u$ und $v$ als statistisch unabhängig angenommen wurden, bestehen keine Beziehungen zwischen $x$ und $y$.   
 
*Da aber $u$ und $v$ als statistisch unabhängig angenommen wurden, bestehen keine Beziehungen zwischen $x$ und $y$.   
*Ebenso ergibt sich $ρ_{xy} = 0$  für die Kombination $B = D = 0$.}}  
+
*Ebenso ergibt sich &nbsp;$ρ_{xy} = 0$&nbsp; für die Kombination $B = D = 0$.}}  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Die Konstellation $B = E = 0$ führt dazu, dass sowohl $x$ als auch $y$ nur noch von $u$ abhängen. In diesem Fall ergibt sich für den Korrelationskoeffizienten $ρ_{xy} = ±1$:  
+
$\text{Beispiel 2:}$&nbsp; Die Konstellation &nbsp;$B = E = 0$&nbsp; führt dazu, dass sowohl $x$ als auch $y$ nur noch von $u$ abhängen. Dann ergibt sich für den Korrelationskoeffizienten:  
 
:$$\rho_{xy } =  \frac {A \cdot D }{\sqrt{A^{\rm 2}\cdot D^{\rm 2} } } = \frac {A \cdot D }{\vert A\vert \cdot \vert D\vert } =\pm 1. $$
 
:$$\rho_{xy } =  \frac {A \cdot D }{\sqrt{A^{\rm 2}\cdot D^{\rm 2} } } = \frac {A \cdot D }{\vert A\vert \cdot \vert D\vert } =\pm 1. $$
  
 
*Besitzen $A$ und $D$ gleiches Vorzeichen, so ist $ρ_{xy} = +1$.  
 
*Besitzen $A$ und $D$ gleiches Vorzeichen, so ist $ρ_{xy} = +1$.  
 
*Bei unterschiedlichen Vorzeichen ergibt sich der Korrelationskoeffizient $-1$.  
 
*Bei unterschiedlichen Vorzeichen ergibt sich der Korrelationskoeffizient $-1$.  
*Auch für $A = D = 0$ ergibt sich der Koeffizient $ρ_{xy} = ±1$. }}
+
*Auch für &nbsp;$A = D = 0$&nbsp; ergibt sich der Koeffizient $ρ_{xy} = ±1$, wenn $B \ne 0$ und $E \ne 0$ gilt. }}
  
 
==Erzeugung korrelierter Zufallsgrößen==
 
==Erzeugung korrelierter Zufallsgrößen==
Zeile 60: Zeile 66:
 
Die [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen#Resultierender_Korrelationskoeffizient|Gleichungen der letzten Seite]] können zur Erzeugung einer zweidimensionalen Zufallsgröße $(x, y)$ mit vorgegebenen Kenngrößen $σ_x$, $σ_y$ und $ρ_{xy}$ genutzt werden.  
 
Die [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen#Resultierender_Korrelationskoeffizient|Gleichungen der letzten Seite]] können zur Erzeugung einer zweidimensionalen Zufallsgröße $(x, y)$ mit vorgegebenen Kenngrößen $σ_x$, $σ_y$ und $ρ_{xy}$ genutzt werden.  
  
*Werden außer diesen drei Sollwerten keine weiteren Voraussetzungen getroffen, so ist einer der vier Koeffizienten $A, B, D$ und $E$ frei wählbar. Im Folgenden wird stets willkürlich $E = 0$ gesetzt.  
+
*Werden außer diesen drei Sollwerten keine weiteren Voraussetzungen getroffen, so ist einer der vier Koeffizienten $A, B, D$ und $E$ frei wählbar.  
 +
*Im Folgenden wird stets willkürlich $E = 0$ gesetzt.  
 
*Mit der weiteren Festlegung, dass die statistisch unabhängigen Zufallsgrößen $u$ und $v$ jeweils die Streuung $σ =1$  aufweisen, erhält man:  
 
*Mit der weiteren Festlegung, dass die statistisch unabhängigen Zufallsgrößen $u$ und $v$ jeweils die Streuung $σ =1$  aufweisen, erhält man:  
 
:$$D = \sigma_y, \hspace{0.5cm} A = \sigma_x \cdot \rho_{xy}, \hspace{0.5cm} B = \sigma_x \cdot \sqrt {1-\rho_{xy}^2}.$$
 
:$$D = \sigma_y, \hspace{0.5cm} A = \sigma_x \cdot \rho_{xy}, \hspace{0.5cm} B = \sigma_x \cdot \sqrt {1-\rho_{xy}^2}.$$
Zeile 70: Zeile 77:
 
Wir gehen stets von mittelwertfreien Gaußschen Zufallsgrößen $u$ und $v$ aus. Beide besitzen die Varianz $σ^2 = 1$.
 
Wir gehen stets von mittelwertfreien Gaußschen Zufallsgrößen $u$ und $v$ aus. Beide besitzen die Varianz $σ^2 = 1$.
  
'''(a)'''&nbsp; Zur Erzeugung einer 2D–Zufallsgröße mit den gewünschten Kennwerten $σ_x =1$, $σ_y = 1.55$ und $ρ_{xy} = -0.8$ eignet sich zum Beispiel der Parametersatz $A =  -0.8, \; B = 0.6, \; D = 1.55,  E = 0$, der dem linken Bild zugrundeliegt.   
+
$(1)$ &nbsp; Zur Erzeugung einer 2D–Zufallsgröße mit den gewünschten Kennwerten $σ_x =1$, $σ_y = 1.55$ und $ρ_{xy} = -0.8$ eignet sich zum Beispiel der Parametersatz  
*Die Korrelationsgerade $K(x)$ ist rot dargestellt. Sie verläuft unter einem Winkel von etwa $-50^\circ$.  
+
[[Datei:P_ID419__Sto_T_4_3_S3_neu.png|right |frame| Per Linearkombination erzeugte 2D-Zufallsgrößen]]
 +
:$$A =  -0.8, \; B = 0.6, \; D = 1.55,  E = 0.$$  
 +
*Dieser Parametersatz liegt der linken Grafik zugrunde.   
 +
*Die Korrelationsgerade $K(x)$ ist rot dargestellt.  
 +
*Sie verläuft unter einem Winkel von etwa $-50^\circ$.  
 
*Violett eingezeichnet ist die Ellipsenhauptachse, die etwas oberhalb der Korrelationsgeraden liegt.  
 
*Violett eingezeichnet ist die Ellipsenhauptachse, die etwas oberhalb der Korrelationsgeraden liegt.  
  
  
[[Datei:P_ID419__Sto_T_4_3_S3_neu.png|center |frame| Per Linearkombination erzeugte 2D-Zufallsgrößen]]
 
  
'''(b)'''&nbsp; Der Parametersatz für die rechte Grafik lautet: $A =  -0.625, B = 0.781, D = 1.501, E =  -0.390$.
+
$(2)$ &nbsp; Der Parametersatz für die rechte Grafik lautet:
 +
:$$A =  -0.625, B = 0.781, D = 1.501, E =  -0.390.$$
 
*Im statistischen Sinne erhält man das gleiche Resultat, auch wenn sich die beiden Punktwolken im Detail unterscheiden.
 
*Im statistischen Sinne erhält man das gleiche Resultat, auch wenn sich die beiden Punktwolken im Detail unterscheiden.
*Insbesondere ergibt sich bezüglich Korrelationsgerade und Ellipsenhauptachse kein Unterschied zum Parametersatz '''(a)'''.  }}
+
*Insbesondere ergibt sich bezüglich Korrelationsgerade und Ellipsenhauptachse kein Unterschied zum Parametersatz $(1)$.  }}
  
 
==Aufgaben zum Kapitel==
 
==Aufgaben zum Kapitel==

Version vom 17. August 2018, 09:15 Uhr

Voraussetzungen und Mittelwerte


Im gesamten Kapitel „ Linearkombinationen von Zufallsgrößen ” gehen wir von den folgenden Annahmen aus:

  • Die Zufallsgrößen $u$ und $v$ seien jeweils mittelwertfrei   ⇒   $m_u = m_v = 0$ und zudem statistisch unabhängig voneinander   ⇒   $ρ_{uv} = 0$.
  • Die beiden Zufallsgrößen $u$ und $v$ besitzen jeweils gleiche Streuung $σ$. Über die Art der Verteilung wird keine Aussage getroffen.
  • Die beiden Zufallsgrößen $x$ und $y$ seien Linearkombinationen von $u$ und $v$, wobei gilt:
$$x=A \cdot u + B \cdot v + C,$$
$$y=D \cdot u + E \cdot v + F.$$

Für die (linearen) Mittelwerte der neuen Zufallsgrößen $x$ und $y$ erhält man nach den allgemeinen Rechenregeln für Erwartungswerte:

$$m_x =A \cdot m_u + B \cdot m_v + C =C,$$
$$m_y =D \cdot m_u + E \cdot m_v + F =F.$$

Die Koeffizienten $C$ und $F$ geben somit lediglich die Mittelwerte von $x$ und $y$ an. Beide werden auf den folgenden Seiten stets zu $0$ gesetzt.

Resultierender Korrelationskoeffizient


Betrachten wir nun die Varianzen der Zufallsgrößen nach den Linearkombinationen.

  • Für die Zufallsgröße $x$ gilt unabhängig vom Parameter $C$:
$$\sigma _x ^2 = {\rm E}\big[x ^{\rm 2}\big] = A^{\rm 2} \cdot {\rm E}\big[u^{\rm 2}\big] + B^{\rm 2} \cdot {\rm E}\big[v^{\rm 2}\big] + {\rm 2} \cdot A \cdot B \cdot {\rm E}\big[u \cdot v\big].$$
  • Die Erwartungswerte von $u^2$ und $v^2$ sind definitionsgemäß jeweils gleich $σ^2$, weil $u$ und $v$ mittelwertfrei sind.
  • Da $u$ und $v$ zudem als statistisch unabhängig vorausgesetzt werden, kann man für den Erwartungswert des Produktes auch schreiben:
$${\rm E}\big[u \cdot v\big] = {\rm E}\big[u\big] \cdot {\rm E}\big[v\big] = m_u \cdot m_v = \rm 0.$$
  • Damit erhält man für die Varianzen der durch Linearkombinationen gebildeten Zufallsgrößen:
$$\sigma _x ^2 =(A^2 + B^2) \cdot \sigma ^2,$$
$$\sigma _y ^2 =(D^2 + E^2) \cdot \sigma ^2.$$


Die Kovarianz $μ_{xy}$ ist bei mittelwertfreien Zufallsgrößen $x$ und $y$   ⇒   $C = F = 0$ identisch mit dem gemeinsamen Moment $m_{xy}$:

$$\mu_{xy } = m_{xy } = {\rm E}\big[x \cdot y\big] = {\rm E}\big[(A \cdot u + B \cdot v)(D \cdot u + E \cdot v)\big].$$

Beachten Sie hierbei, dass ${\rm E}\big[ \text{...} \big]$ einen Erwartungswert bezeichnet, während $E$ eine Variable beschreibt.

$\text{Fazit:}$ Nach Auswertung dieser Gleichung in analoger Weise zu oben folgt daraus:

$$\mu_{xy } = (A \cdot D + B \cdot E) \cdot \sigma^{\rm 2 } \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \rho_{xy } = \frac{\rho_{xy } }{\sigma_x \cdot \sigma_y} = \frac {A \cdot D + B \cdot E}{\sqrt{(A^{\rm 2}+B^{\rm 2})(D^{\rm 2}+E^{\rm 2} ) } }. $$


Wir schließen nun die Sonderfälle $A = B = 0$ (d. h. $x ≡ 0$ ) sowie $D = E = 0$ (d. h. $y ≡ 0$ ) aus. Dann liefert diese Gleichung stets eindeutige Werte für den Korrelationskoeffizienten im Bereich  $–1 ≤ ρ_{xy} ≤ +1$.

$\text{Beispiel 1:}$  Setzen wir zum Beispiel $A = E = 0$, so ergibt sich der Korrelationskoeffizient $ρ_{xy} = 0$. Dieses Ergebnis ist einsichtig:

  • Nun hängt $x$ nur noch von $v$ und $y$ ausschließlich von $u$ ab.
  • Da aber $u$ und $v$ als statistisch unabhängig angenommen wurden, bestehen keine Beziehungen zwischen $x$ und $y$.
  • Ebenso ergibt sich  $ρ_{xy} = 0$  für die Kombination $B = D = 0$.


$\text{Beispiel 2:}$  Die Konstellation  $B = E = 0$  führt dazu, dass sowohl $x$ als auch $y$ nur noch von $u$ abhängen. Dann ergibt sich für den Korrelationskoeffizienten:

$$\rho_{xy } = \frac {A \cdot D }{\sqrt{A^{\rm 2}\cdot D^{\rm 2} } } = \frac {A \cdot D }{\vert A\vert \cdot \vert D\vert } =\pm 1. $$
  • Besitzen $A$ und $D$ gleiches Vorzeichen, so ist $ρ_{xy} = +1$.
  • Bei unterschiedlichen Vorzeichen ergibt sich der Korrelationskoeffizient $-1$.
  • Auch für  $A = D = 0$  ergibt sich der Koeffizient $ρ_{xy} = ±1$, wenn $B \ne 0$ und $E \ne 0$ gilt.

Erzeugung korrelierter Zufallsgrößen


Die Gleichungen der letzten Seite können zur Erzeugung einer zweidimensionalen Zufallsgröße $(x, y)$ mit vorgegebenen Kenngrößen $σ_x$, $σ_y$ und $ρ_{xy}$ genutzt werden.

  • Werden außer diesen drei Sollwerten keine weiteren Voraussetzungen getroffen, so ist einer der vier Koeffizienten $A, B, D$ und $E$ frei wählbar.
  • Im Folgenden wird stets willkürlich $E = 0$ gesetzt.
  • Mit der weiteren Festlegung, dass die statistisch unabhängigen Zufallsgrößen $u$ und $v$ jeweils die Streuung $σ =1$ aufweisen, erhält man:
$$D = \sigma_y, \hspace{0.5cm} A = \sigma_x \cdot \rho_{xy}, \hspace{0.5cm} B = \sigma_x \cdot \sqrt {1-\rho_{xy}^2}.$$
  • Bei $σ ≠ 1$ sind diese Werte jeweils noch durch $σ$ zu dividieren.


$\text{Beispiel 3:}$  Wir gehen stets von mittelwertfreien Gaußschen Zufallsgrößen $u$ und $v$ aus. Beide besitzen die Varianz $σ^2 = 1$.

$(1)$   Zur Erzeugung einer 2D–Zufallsgröße mit den gewünschten Kennwerten $σ_x =1$, $σ_y = 1.55$ und $ρ_{xy} = -0.8$ eignet sich zum Beispiel der Parametersatz

Per Linearkombination erzeugte 2D-Zufallsgrößen
$$A = -0.8, \; B = 0.6, \; D = 1.55, E = 0.$$
  • Dieser Parametersatz liegt der linken Grafik zugrunde.
  • Die Korrelationsgerade $K(x)$ ist rot dargestellt.
  • Sie verläuft unter einem Winkel von etwa $-50^\circ$.
  • Violett eingezeichnet ist die Ellipsenhauptachse, die etwas oberhalb der Korrelationsgeraden liegt.


$(2)$   Der Parametersatz für die rechte Grafik lautet:

$$A = -0.625, B = 0.781, D = 1.501, E = -0.390.$$
  • Im statistischen Sinne erhält man das gleiche Resultat, auch wenn sich die beiden Punktwolken im Detail unterscheiden.
  • Insbesondere ergibt sich bezüglich Korrelationsgerade und Ellipsenhauptachse kein Unterschied zum Parametersatz $(1)$.

Aufgaben zum Kapitel


Aufgabe 4.7: Gewichtete Summe und Differenz

Aufgabe 4.7Z: Erzeugung einer 2D–WDF

Aufgabe 4.8: Rautenförmige 2D-WDF

Aufgabe 4.8Z: AWGN-Kanal