Aufgaben:Aufgabe 5.9: Minimierung des MQF: Unterschied zwischen den Versionen
Zeile 68: | Zeile 68: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Richtig ist | + | '''(1)''' Richtig ist <u>nur der letzte Lösungsvorschlag</u>: |
− | *Die Aufgabenstellung | + | *Die Aufgabenstellung ⇒ „Minimierung des mittleren quadratischen Fehlers” weist bereits auf das Filter nach Wiener–Kolmogorow hin. |
*Das Matched–Filter verwendet man dagegen, um die Signalenergie zu bündeln und dadurch für einen vorgegebenen Zeitpunkt das S/N–Verhältnis zu maximieren. | *Das Matched–Filter verwendet man dagegen, um die Signalenergie zu bündeln und dadurch für einen vorgegebenen Zeitpunkt das S/N–Verhältnis zu maximieren. | ||
+ | |||
Zeile 76: | Zeile 77: | ||
:$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$ | :$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$ | ||
− | Mit den gegebenen Leistungsdichtespektren kann hierfür auch geschrieben werden: | + | *Mit den gegebenen Leistungsdichtespektren kann hierfür auch geschrieben werden: |
:$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$ | :$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$ | ||
− | Mit $Q = 3$ folgt daraus: | + | *Mit $Q = 3$ folgt daraus: |
:$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$ | :$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$ | ||
:$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$ | :$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$ | ||
− | '''(3)''' Für das in der Teilaufgabe (2) berechnete Filter gilt unter Berücksichtigung der Symmetrie: | + | |
+ | '''(3)''' Für das in der Teilaufgabe '''(2)''' berechnete Filter gilt unter Berücksichtigung der Symmetrie: | ||
:$${\rm{MQF = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$ | :$${\rm{MQF = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$ | ||
− | Hierfür kann mit $Q = 2 \cdot {\it \Phi}_0/N_0$ und $a^2 = Q + 1$ auch geschrieben werden:<br /> | + | *Hierfür kann mit $Q = 2 \cdot {\it \Phi}_0/N_0$ und $a^2 = Q + 1$ auch geschrieben werden:<br /> |
:$${\rm{MQF = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$ | :$${\rm{MQF = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$ | ||
− | Mit dem angegebenen Integral führt dies zum Ergebnis: | + | *Mit dem angegebenen Integral führt dies zum Ergebnis: |
:$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$ | :$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$ | ||
− | Normiert man MQF auf die Nutzleistung $P_s$, so erhält man für $Q=3$: | + | *Normiert man MQF auf die Nutzleistung $P_s$, so erhält man für $Q=3$: |
:$$\frac{\rm{MQF}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$ | :$$\frac{\rm{MQF}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$ | ||
− | '''(4)''' Aus der Berechnung in in der Teilaufgabe (3) folgt für ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung $Q \ge 99$ ⇒ $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$. Je größer $Q$ ist, desto kleiner wird der mittlere quadratische Fehler. | + | |
+ | '''(4)''' Aus der Berechnung in in der Teilaufgabe '''(3)''' folgt für ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung $Q \ge 99$ ⇒ $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$. | ||
+ | *Je größer $Q$ ist, desto kleiner wird der mittlere quadratische Fehler. | ||
+ | |||
+ | |||
'''(5)''' Richtig ist <u>nur der zweite Lösungsvorschlag</u>: | '''(5)''' Richtig ist <u>nur der zweite Lösungsvorschlag</u>: | ||
− | *Ein zum Wiener–Kolmogorow–Filterr formgleicher Frequenzgang ⇒ $H(f) = K \cdot H_{\rm WF}(f)$ mit $K \ne 1$ führt stets zu großen Verfälschungen. Dies kann man sich zum Beispiel am rauschfreien Fall ($Q \to \infty$) verdeutlichen: | + | *Ein zum Wiener–Kolmogorow–Filterr formgleicher Frequenzgang ⇒ $H(f) = K \cdot H_{\rm WF}(f)$ mit $K \ne 1$ führt stets zu großen Verfälschungen. |
− | + | *Dies kann man sich zum Beispiel am rauschfreien Fall ($Q \to \infty$) verdeutlichen: | |
+ | :In diesem Fall wäre $d(t) = K \cdot s(t)$ und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst. | ||
*Aus der Gleichung | *Aus der Gleichung | ||
:$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$ | :$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$ | ||
− | könnte man fälschlicherweise schließen, dass durch ein Filter $H(f) = 2 \cdot H_{\rm WF}(f))$ der mittlere quadratische Fehler nur verdoppelt wird. Dem ist jedoch nicht so, da $H(f)$dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar. | + | :könnte man fälschlicherweise schließen, dass durch ein Filter $H(f) = 2 \cdot H_{\rm WF}(f))$ der mittlere quadratische Fehler nur verdoppelt wird. |
+ | *Dem ist jedoch nicht so, da $H(f)$dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar. | ||
+ | |||
− | [[Datei:P_ID651__Sto_A_5_9_e.png|right|Leistungsdichtespektren beim Wiener-Filter]] | + | [[Datei:P_ID651__Sto_A_5_9_e.png|right|frame|Leistungsdichtespektren beim Wiener-Filter]] |
Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze hervorgeht. | Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze hervorgeht. | ||
*Die Punkte markieren den Frequenzgang $H_{\rm WF}(f))$ des Wiener–Kolmogorow–Filters für $Q = 3$ bzw. für $Q = 10$. | *Die Punkte markieren den Frequenzgang $H_{\rm WF}(f))$ des Wiener–Kolmogorow–Filters für $Q = 3$ bzw. für $Q = 10$. |
Version vom 27. August 2018, 09:45 Uhr
Gegeben ist ein stochastisches Nutzsignal $s(t)$, von dem nur das Leistungsdichtespektrum (LDS) bekannt ist:
- $${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$
Dieses Leistungsdichtespektrum ${\it \Phi} _s (f)$ ist in der nebenstehenden Grafik blau dargestellt.
- Die mittlere Leistung von $s(t)$ ergibt sich durch Integration über das Leistungsdichtespektrum:
- $$P_s = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0 \cdot f_0 \cdot {\rm{\pi }}.$$
- Additiv überlagert ist dem Nutzsignal $s(t)$ Weißes Rauschen mit der Rauschleistungsdichte ${\it \Phi}_n(f) = N_0/2.$
- Als Abkürzung verwenden wir $Q = 2 \cdot {\it \Phi}_0/N_0$, wobei $Q$ als „Qualität” interpretiert werden könnte.
- Zu beachten ist, dass $Q$ kein Signal–zu–Rauschleistungsverhältnis darstellt.
In dieser Aufgabe soll der Frequenzgang $H(f)$ eines Filters ermittelt werden, das den mittleren quadratischen Fehler $\rm (MQF)$ zwischen dem Nutzsignal $s(t)$ und dem Filterausgangssignal $d(t)$ minimiert:
- $${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Wiener–Kolmogorow–Filter.
- Zur Lösung vorgegeben wird das folgende unbestimmte Integral:
- $$\int {\frac{1}{a^2 + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$
Fragebogen
Musterlösung
- Die Aufgabenstellung ⇒ „Minimierung des mittleren quadratischen Fehlers” weist bereits auf das Filter nach Wiener–Kolmogorow hin.
- Das Matched–Filter verwendet man dagegen, um die Signalenergie zu bündeln und dadurch für einen vorgegebenen Zeitpunkt das S/N–Verhältnis zu maximieren.
(2) Für den optimalen Frequenzgang gilt nach Wiener und Kolmogorow allgemein:
- $$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
- Mit den gegebenen Leistungsdichtespektren kann hierfür auch geschrieben werden:
- $$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
- Mit $Q = 3$ folgt daraus:
- $$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$
- $$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$
(3) Für das in der Teilaufgabe (2) berechnete Filter gilt unter Berücksichtigung der Symmetrie:
- $${\rm{MQF = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
- Hierfür kann mit $Q = 2 \cdot {\it \Phi}_0/N_0$ und $a^2 = Q + 1$ auch geschrieben werden:
- $${\rm{MQF = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$
- Mit dem angegebenen Integral führt dies zum Ergebnis:
- $${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
- Normiert man MQF auf die Nutzleistung $P_s$, so erhält man für $Q=3$:
- $$\frac{\rm{MQF}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$
(4) Aus der Berechnung in in der Teilaufgabe (3) folgt für ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung $Q \ge 99$ ⇒ $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$.
- Je größer $Q$ ist, desto kleiner wird der mittlere quadratische Fehler.
(5) Richtig ist nur der zweite Lösungsvorschlag:
- Ein zum Wiener–Kolmogorow–Filterr formgleicher Frequenzgang ⇒ $H(f) = K \cdot H_{\rm WF}(f)$ mit $K \ne 1$ führt stets zu großen Verfälschungen.
- Dies kann man sich zum Beispiel am rauschfreien Fall ($Q \to \infty$) verdeutlichen:
- In diesem Fall wäre $d(t) = K \cdot s(t)$ und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst.
- Aus der Gleichung
- $${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
- könnte man fälschlicherweise schließen, dass durch ein Filter $H(f) = 2 \cdot H_{\rm WF}(f))$ der mittlere quadratische Fehler nur verdoppelt wird.
- Dem ist jedoch nicht so, da $H(f)$dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar.
Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze hervorgeht.
- Die Punkte markieren den Frequenzgang $H_{\rm WF}(f))$ des Wiener–Kolmogorow–Filters für $Q = 3$ bzw. für $Q = 10$.
- Bei größerem $Q (= 10)$ werden hohe Anteile weniger gedämpft als bei niedrigerem $Q (= 3)$.
- Deshalb beinhaltet das Filterausgangssignal im Fall $Q = 10$ auch mehr höherfrequente Anteile, die auf das Rauschen $n(t)$ zurückgehen.