Aufgaben:Aufgabe 2.8: Huffman-Anwendung bei einer Markovquelle: Unterschied zwischen den Versionen
Zeile 66: | Zeile 66: | ||
{Welche Schranke ergibt sich für die mittlere Codewortlänge, wenn <u>Zweiertupel</u> gebildet werden $(k = 2)$? Interpretation. | {Welche Schranke ergibt sich für die mittlere Codewortlänge, wenn <u>Zweiertupel</u> gebildet werden $(k = 2)$? Interpretation. | ||
− | |type=" | + | |type="()"} |
- $L_{\rm M} \ge H_1 = 1.000$ bit/Quellensymbol, | - $L_{\rm M} \ge H_1 = 1.000$ bit/Quellensymbol, | ||
+ $L_{\rm M} \ge H_2 \approx 0.861$ bit/Quellensymbol, | + $L_{\rm M} \ge H_2 \approx 0.861$ bit/Quellensymbol, | ||
Zeile 96: | Zeile 96: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Bei der blauen Quellensymbolfolge 2 erkennt man sehr viel weniger Symbolwechsel als in der roten Folge. Die Symbolfolge 2 wurde mit dem Parameter $q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = | + | '''(1)''' Richtig ist der <u>Lösungsvorschlag 2</u>: |
− | {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.8$ erzeugt und die rote Symbolfolge 1 mit $q = 0.2$ | + | *Bei der blauen Quellensymbolfolge '''2''' erkennt man sehr viel weniger Symbolwechsel als in der roten Folge. |
+ | *Die Symbolfolge '''2''' wurde mit dem Parameter $q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = | ||
+ | {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.8$ erzeugt und die rote Symbolfolge '''1''' mit $q = 0.2$. | ||
+ | |||
+ | |||
'''(2)''' Richtig sind die <u>Antworten 2 und 3</u>.: | '''(2)''' Richtig sind die <u>Antworten 2 und 3</u>.: | ||
− | *Da hier die Quellensymbole | + | *Da hier die Quellensymbole $\rm X$ und $\rm X$ gleichwahrscheinlich angenommen wurden, macht die direkte Anwendung von Huffman keinen Sinn. |
− | *Dagegen kann man die inneren statistischen Bindungen der Markovquelle zur Datenkomprimierung nutzen, wenn man | + | *Dagegen kann man die inneren statistischen Bindungen der Markovquelle zur Datenkomprimierung nutzen, wenn man $k$–Tupel bildet $(k ≥ 2)$. |
− | *Je größer | + | *Je größer $k$ ist, desto mehr nähert sich die Codewortlänge $L_{\rm M}$ der Entropie $H$. |
+ | |||
− | '''(3)''' Die Symbolwahrscheinlichkeiten | + | '''(3)''' Die Symbolwahrscheinlichkeiten sind $p_{\rm X} = p_{\rm Y} = 0.5$. Damit erhält man für die Zweiertupel: |
:$$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XX}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot q = 0.5 \cdot 0.8 \hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm},$$ | :$$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XX}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot q = 0.5 \cdot 0.8 \hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm},$$ | ||
:$$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XY}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},$$ | :$$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XY}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},$$ | ||
Zeile 111: | Zeile 116: | ||
:$$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YY}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot q = 0.5 \cdot 0.8\hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm}.$$ | :$$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YY}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot q = 0.5 \cdot 0.8\hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm}.$$ | ||
− | |||
− | |||
− | |||
− | |||
− | '''( | + | [[Datei:P_ID2462__Inf_A_2_8d.png|right|frame|Zur Huffman–Codierung für $k = 2$]] |
+ | '''(4)''' Nebenstehender Bildschirmabzug des Programms [[Applets:Huffman_Shannon_Fano|Shannon–Fano– und Huffman–Codierung]] zeigt die Konstruktion des Huffman–Codes für $k = 2$ mit den soeben berechneten Wahrscheinlichkeiten. Damit gilt für die mittlere Codewortlänge: | ||
+ | :$$L_{\rm M}\hspace{0.01cm}' = 0.4 \cdot 1 + 0.4 \cdot 2 + (0.1 + 0.1) \cdot 3 = 1.8\,\,{\rm bit/Zweiertupel}$$ | ||
+ | :$$\Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{2}\hspace{0.15cm}\underline{ = 0.9\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$ | ||
+ | |||
+ | '''(5)''' Richtig iist der <u>Lösungsvorschlag 2</u>: | ||
+ | *Nach dem Quellencodierungstheorem gilt $L_{\rm M} ≥ H$. | ||
+ | *Wendet man aber Huffman–Codierung an und lässt dabei Bindungen zwischen nicht benachbarten Symbolen außer Betracht $(k = 2)$, so gilt als unterste Grenze der Codewortlänge nicht $H = 0.722$, sondern $H_2 = 0.861$ (auf den Zusatz bit/Quellensymbol wird für den Rest der Aufgabe verzichtet). | ||
+ | *Das Ergebnis der Teilaufgabe '''(4) war''' $L_{\rm M} = 0.9.$ | ||
+ | *Würde eine unsymmetrische Markovkette vorliegen und zwar derart, dass sich für die Wahrscheinlichkeiten $p_{\rm A}$, ... , $p_{\rm D}$ die Werte $50\%$, $25\%$ und zweimal $12.5\%$ ergeben würden, so käme man auf die mittlere Codewortlänge $L_{\rm M} = 0.875$. | ||
+ | *Wie die genauen Parameter dieser unsymmetrischen Markovquelle aussehen, weiß aber auch der Aufgabensteller (G. Söder) nicht. | ||
+ | *Auch nicht, wie sich der Wert $0.875$ auf $0.861$ senken ließe. Der Huffman–Algorithmus ist hierfür jedenfalls ungeeignet. | ||
− | |||
− | '''(6)''' Mit | + | '''(6)''' Mit $q = 0.8$ und $1 - q = 0.2$ erhält man: |
:$$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXX}) = 0.5 \cdot q^2 \hspace{0.15cm}\underline{ = 0.32} = p_{\rm H} = {\rm Pr}(\boldsymbol{\rm YYY})\hspace{0.05cm},$$ | :$$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXX}) = 0.5 \cdot q^2 \hspace{0.15cm}\underline{ = 0.32} = p_{\rm H} = {\rm Pr}(\boldsymbol{\rm YYY})\hspace{0.05cm},$$ | ||
:$$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXY}) = 0.5 \cdot q \cdot (1-q) \hspace{0.15cm}\underline{ = 0.08}= p_{\rm G} = {\rm Pr}(\boldsymbol{\rm YYX}) \hspace{0.05cm},$$ | :$$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXY}) = 0.5 \cdot q \cdot (1-q) \hspace{0.15cm}\underline{ = 0.08}= p_{\rm G} = {\rm Pr}(\boldsymbol{\rm YYX}) \hspace{0.05cm},$$ | ||
Zeile 127: | Zeile 138: | ||
:$$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYY}) = 0.5 \cdot (1-q) \cdot q \hspace{0.15cm}\underline{ = 0.08} = p_{\rm E} = {\rm Pr}(\boldsymbol{\rm YXX})\hspace{0.05cm}.$$ | :$$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYY}) = 0.5 \cdot (1-q) \cdot q \hspace{0.15cm}\underline{ = 0.08} = p_{\rm E} = {\rm Pr}(\boldsymbol{\rm YXX})\hspace{0.05cm}.$$ | ||
− | |||
− | |||
− | |||
− | [[Datei:P_ID2463__Inf_A_2_8g.png|Zur Huffman–Codierung für | + | '''(7)''' Der Bildschirmabzug des Flash–Moduls verdeutlicht die Konstellation des Huffman–Codes für $k = 3$. Damit erhält man für die mittlere Codewortlänge: |
+ | :$$L_{\rm M}\hspace{0.01cm}' = 0.64 \cdot 2 + 0.24 \cdot 3 + 0.04 \cdot 5 = 2.52\,\,{\rm bit/Dreiertupel}\hspace{0.3cm} | ||
+ | \Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{3}\hspace{0.15cm}\underline{ = 0.84\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$ | ||
+ | |||
+ | [[Datei:P_ID2463__Inf_A_2_8g.png|right|frame|Zur Huffman–Codierung für $k = 3$]] | ||
− | Man erkennt die Verbesserung gegenüber (4). Die für | + | *Man erkennt die Verbesserung gegenüber '''(4)'''. |
+ | *Die für $k = 2$ gültige informationstheoretische Schranke $H_2 = 0.861$ wird nun von der mittleren Codewortlänge $L_{\rm M}$ unterschritten. | ||
+ | *Die neue Schranke für $k = 3$ ist $H_3 = 0.815$. | ||
+ | *Um die Quellenentropie $H = 0.722$ zu erreichen (besser gesagt: diesem Endwert bis auf ein $ε$ nahe zu kommen), müsste man allerdings unendlich lange Tupel bilden $(k → ∞)$. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 28. September 2018, 15:12 Uhr
Wir betrachten hier die binäre symmetrische Markovquelle entsprechend nebenstehender Grafik, die durch den einzigen Parameter
- $$q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y})$$
vollständig beschrieben wird.
- Die angegebenen Quellensymbolfolgen gelten für die bedingten Wahrscheinlichkeiten $q = 0.2$ bzw. $q = 0.8$.
- In der Teilaufgabe (1) ist zu klären, welche Symbolfolge – die rote oder die blaue – mit $q = 0.2$ und welche mit $q = 0.8$ generiert wurde.
Die Eigenschaften von Markovquellen werden im Kapitel Nachrichtenquellen mit Gedächtnis ausführlich beschrieben. Aufgrund der hier vorausgesetzten Symmetrie bezüglich der Binärsymbole $\rm X$ und $\rm Y$ ergeben sich einige gravierende Vereinfachungen, wie in der Zusatzaufgabe 1.5Z hergeleitet wird:
- Die Symbole $\rm X$ und $\rm Y$ sind gleichwahrscheinlich, das heißt, es ist $p_{\rm X} = p_{\rm Y} = 0.5$. Damit lautet die erste Entropienäherung: $H_1 = 1\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}. $
- Die Entropie der Markovquelle ergibt sich sowohl für $q = 0.2$ als auch für $q = 0.8$ zu
- $$H = q \cdot {\rm log_2}\hspace{0.15cm}\frac{1}{q} + (1-q) \cdot {\rm log_2}\hspace{0.15cm}\frac{1}{1-q} = 0.722\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}.$$
- Bei Markovquellen sind alle Entropienäherungen mit Ordnung $k \ge 2$ durch $H_1$ und $H = H_{k \to \infty}$ bestimmt. Die folgenden Zahlenwerte gelten wieder für $q = 0.2$ und $q = 0.8$ gleichermaßen:
- $$H_2 = {1}/{2}\cdot \big [ H_1 + H \big ] = 0.861\,\,{\rm bit/Quellensymbol}\hspace{0.05cm},$$
- $$H_3 = {1}/{3} \cdot \big [ H_1 + 2H \big ] = 0.815\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}.$$
In dieser Aufgabe soll der Huffman–Algorithmus auf $k$–Tupel angewandt werden, wobei wir uns auf $k = 2$ und $k = 3$ beschränken.
Hinweise:
- Die Aufgabe gehört zum Kapitel Entropiecodierung nach Huffman.
- Insbesondere wird auf die Seite Anwendung der Huffman-Codierung auf k-Tupel Bezug genommen.
- Nützliche Informationen finden Sie auch in den Angabenblättern zu Aufgabe 2.7 und Aufgabe 2.7Z.
- Zur Kontrolle Ihrer Ergebnisse verweisen wir auf das Interaktionsmodul Shannon–Fano– und Huffman–Codierung.
Fragebogen
Musterlösung
- Bei der blauen Quellensymbolfolge 2 erkennt man sehr viel weniger Symbolwechsel als in der roten Folge.
- Die Symbolfolge 2 wurde mit dem Parameter $q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.8$ erzeugt und die rote Symbolfolge 1 mit $q = 0.2$.
(2) Richtig sind die Antworten 2 und 3.:
- Da hier die Quellensymbole $\rm X$ und $\rm X$ gleichwahrscheinlich angenommen wurden, macht die direkte Anwendung von Huffman keinen Sinn.
- Dagegen kann man die inneren statistischen Bindungen der Markovquelle zur Datenkomprimierung nutzen, wenn man $k$–Tupel bildet $(k ≥ 2)$.
- Je größer $k$ ist, desto mehr nähert sich die Codewortlänge $L_{\rm M}$ der Entropie $H$.
(3) Die Symbolwahrscheinlichkeiten sind $p_{\rm X} = p_{\rm Y} = 0.5$. Damit erhält man für die Zweiertupel:
- $$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XX}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot q = 0.5 \cdot 0.8 \hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm},$$
- $$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XY}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},$$
- $$p_{\rm C} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YX}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},$$
- $$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YY}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot q = 0.5 \cdot 0.8\hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm}.$$
(4) Nebenstehender Bildschirmabzug des Programms Shannon–Fano– und Huffman–Codierung zeigt die Konstruktion des Huffman–Codes für $k = 2$ mit den soeben berechneten Wahrscheinlichkeiten. Damit gilt für die mittlere Codewortlänge:
- $$L_{\rm M}\hspace{0.01cm}' = 0.4 \cdot 1 + 0.4 \cdot 2 + (0.1 + 0.1) \cdot 3 = 1.8\,\,{\rm bit/Zweiertupel}$$
- $$\Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{2}\hspace{0.15cm}\underline{ = 0.9\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$
(5) Richtig iist der Lösungsvorschlag 2:
- Nach dem Quellencodierungstheorem gilt $L_{\rm M} ≥ H$.
- Wendet man aber Huffman–Codierung an und lässt dabei Bindungen zwischen nicht benachbarten Symbolen außer Betracht $(k = 2)$, so gilt als unterste Grenze der Codewortlänge nicht $H = 0.722$, sondern $H_2 = 0.861$ (auf den Zusatz bit/Quellensymbol wird für den Rest der Aufgabe verzichtet).
- Das Ergebnis der Teilaufgabe (4) war $L_{\rm M} = 0.9.$
- Würde eine unsymmetrische Markovkette vorliegen und zwar derart, dass sich für die Wahrscheinlichkeiten $p_{\rm A}$, ... , $p_{\rm D}$ die Werte $50\%$, $25\%$ und zweimal $12.5\%$ ergeben würden, so käme man auf die mittlere Codewortlänge $L_{\rm M} = 0.875$.
- Wie die genauen Parameter dieser unsymmetrischen Markovquelle aussehen, weiß aber auch der Aufgabensteller (G. Söder) nicht.
- Auch nicht, wie sich der Wert $0.875$ auf $0.861$ senken ließe. Der Huffman–Algorithmus ist hierfür jedenfalls ungeeignet.
(6) Mit $q = 0.8$ und $1 - q = 0.2$ erhält man:
- $$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXX}) = 0.5 \cdot q^2 \hspace{0.15cm}\underline{ = 0.32} = p_{\rm H} = {\rm Pr}(\boldsymbol{\rm YYY})\hspace{0.05cm},$$
- $$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXY}) = 0.5 \cdot q \cdot (1-q) \hspace{0.15cm}\underline{ = 0.08}= p_{\rm G} = {\rm Pr}(\boldsymbol{\rm YYX}) \hspace{0.05cm},$$
- $$p_{\rm C} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYX}) = 0.5 \cdot (1-q)^2\hspace{0.15cm}\underline{ = 0.02} = p_{\rm F}= {\rm Pr}(\boldsymbol{\rm YXY}) \hspace{0.05cm},$$
- $$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYY}) = 0.5 \cdot (1-q) \cdot q \hspace{0.15cm}\underline{ = 0.08} = p_{\rm E} = {\rm Pr}(\boldsymbol{\rm YXX})\hspace{0.05cm}.$$
(7) Der Bildschirmabzug des Flash–Moduls verdeutlicht die Konstellation des Huffman–Codes für $k = 3$. Damit erhält man für die mittlere Codewortlänge:
- $$L_{\rm M}\hspace{0.01cm}' = 0.64 \cdot 2 + 0.24 \cdot 3 + 0.04 \cdot 5 = 2.52\,\,{\rm bit/Dreiertupel}\hspace{0.3cm} \Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{3}\hspace{0.15cm}\underline{ = 0.84\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$
- Man erkennt die Verbesserung gegenüber (4).
- Die für $k = 2$ gültige informationstheoretische Schranke $H_2 = 0.861$ wird nun von der mittleren Codewortlänge $L_{\rm M}$ unterschritten.
- Die neue Schranke für $k = 3$ ist $H_3 = 0.815$.
- Um die Quellenentropie $H = 0.722$ zu erreichen (besser gesagt: diesem Endwert bis auf ein $ε$ nahe zu kommen), müsste man allerdings unendlich lange Tupel bilden $(k → ∞)$.