Aufgaben:Aufgabe 4.5Z: Nochmals Transinformation: Unterschied zwischen den Versionen
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “) |
|||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID2893__Inf_Z_4_5.png|right|frame|Gegebene Verbund–WDF und Schaubild der differentiellen Entropien]] | [[Datei:P_ID2893__Inf_Z_4_5.png|right|frame|Gegebene Verbund–WDF und Schaubild der differentiellen Entropien]] | ||
− | Die Grafik zeigt oben die in dieser Aufgabe zu betrachtende Verbund–WDF $f_{XY}(x, y)$, die identisch ist mit der „grünen” Konstellation in der | + | Die Grafik zeigt oben die in dieser Aufgabe zu betrachtende Verbund–WDF $f_{XY}(x, y)$, die identisch ist mit der „grünen” Konstellation in der [[Aufgaben:Aufgabe_4.5:_Transinformation_aus_2D-WDF|Aufgabe 4.5.]]. |
− | [Aufgaben: | + | * $f_{XY}(x, y)$ ist in der $y$–Richtung um den Faktor $3$ vergrößert. |
+ | *Im grün hinterlegten Definitionsgebiet ist die Verbund–WDF konstant gleich $C = 1/F$, wobei $F$ die Fläche des Parallelogramms angibt. | ||
+ | |||
In der Aufgabe 4.5 wurden folgende differentielle Entropien berechnet: | In der Aufgabe 4.5 wurden folgende differentielle Entropien berechnet: | ||
Zeile 11: | Zeile 13: | ||
:$$h(Y) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}B \cdot \sqrt{ {\rm e } } \hspace{0.05cm})\hspace{0.05cm},$$ | :$$h(Y) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}B \cdot \sqrt{ {\rm e } } \hspace{0.05cm})\hspace{0.05cm},$$ | ||
:$$h(XY) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}F \hspace{0.05cm}) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A \cdot B \hspace{0.05cm})\hspace{0.05cm}.$$ | :$$h(XY) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}F \hspace{0.05cm}) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A \cdot B \hspace{0.05cm})\hspace{0.05cm}.$$ | ||
− | In dieser Aufgabe sind nun die | + | In dieser Aufgabe sind nun die Parameterwerte $A = {\rm e}^{-2}$ und $B = {\rm e}^{0.5}$ zu verwenden. |
− | + | ||
− | |||
Entsprechend dem obigen Schaubild sollen nun auch die bedingten differentiellen Entropien $h(Y|X)$ und $h(X|Y)$ ermittelt und deren Bezug zur Transinformation $I(X; Y)$ angegeben werden. | Entsprechend dem obigen Schaubild sollen nun auch die bedingten differentiellen Entropien $h(Y|X)$ und $h(X|Y)$ ermittelt und deren Bezug zur Transinformation $I(X; Y)$ angegeben werden. | ||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]]. | + | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]]. |
*Sollen die Ergebnisse in „nat” angegeben werden, so erreicht man dies mit „log” ⇒ „ln”. | *Sollen die Ergebnisse in „nat” angegeben werden, so erreicht man dies mit „log” ⇒ „ln”. | ||
*Sollen die Ergebnisse in „bit” angegeben werden, so erreicht man dies mit „log” ⇒ „log<sub>2</sub>”. | *Sollen die Ergebnisse in „bit” angegeben werden, so erreicht man dies mit „log” ⇒ „log<sub>2</sub>”. | ||
Zeile 29: | Zeile 33: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | |||
{Geben Sie die folgenden informationstheoretischen Größen in „nat” an: | {Geben Sie die folgenden informationstheoretischen Größen in „nat” an: | ||
Zeile 61: | Zeile 64: | ||
{Welche der folgenden Größen sind niemals negativ? | {Welche der folgenden Größen sind niemals negativ? | ||
|type="[]"} | |type="[]"} | ||
− | + Sowohl $H(X)$ als auch $H(Y)$ im wertdiskreten Fall. | + | + Sowohl $H(X)$ als auch $H(Y)$ im wertdiskreten Fall. |
− | + Die Transinformation $I(X; Y)$ im wertdiskreten Fall. | + | + Die Transinformation $I(X; Y)$ im wertdiskreten Fall. |
− | + Die Transinformation $I(X; Y)$ im wertkontinuierlichen Fall. | + | + Die Transinformation $I(X; Y)$ im wertkontinuierlichen Fall. |
− | - Sowohl $h(X)$ als auch $h(Y)$ im wertkontinuierlichen Fall. | + | - Sowohl $h(X)$ als auch $h(Y)$ im wertkontinuierlichen Fall. |
− | - Sowohl $h(X|Y)$ als auch $h(Y|X)$ im wertkontinuierlichen Fall. | + | - Sowohl $h(X|Y)$ als auch $h(Y|X)$ im wertkontinuierlichen Fall. |
− | - Die Verbundentropie $h(XY)$ im wertkontinuierlichen Fall. | + | - Die Verbundentropie $h(XY)$ im wertkontinuierlichen Fall. |
</quiz> | </quiz> |
Version vom 18. Oktober 2018, 09:14 Uhr
Die Grafik zeigt oben die in dieser Aufgabe zu betrachtende Verbund–WDF $f_{XY}(x, y)$, die identisch ist mit der „grünen” Konstellation in der Aufgabe 4.5..
- $f_{XY}(x, y)$ ist in der $y$–Richtung um den Faktor $3$ vergrößert.
- Im grün hinterlegten Definitionsgebiet ist die Verbund–WDF konstant gleich $C = 1/F$, wobei $F$ die Fläche des Parallelogramms angibt.
In der Aufgabe 4.5 wurden folgende differentielle Entropien berechnet:
- $$h(X) \ = \ {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A\hspace{0.05cm})\hspace{0.05cm},$$
- $$h(Y) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}B \cdot \sqrt{ {\rm e } } \hspace{0.05cm})\hspace{0.05cm},$$
- $$h(XY) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}F \hspace{0.05cm}) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A \cdot B \hspace{0.05cm})\hspace{0.05cm}.$$
In dieser Aufgabe sind nun die Parameterwerte $A = {\rm e}^{-2}$ und $B = {\rm e}^{0.5}$ zu verwenden.
Entsprechend dem obigen Schaubild sollen nun auch die bedingten differentiellen Entropien $h(Y|X)$ und $h(X|Y)$ ermittelt und deren Bezug zur Transinformation $I(X; Y)$ angegeben werden.
Hinweise:
- Die Aufgabe gehört zum Kapitel AWGN–Kanalkapazität bei wertkontinuierlichem Eingang.
- Sollen die Ergebnisse in „nat” angegeben werden, so erreicht man dies mit „log” ⇒ „ln”.
- Sollen die Ergebnisse in „bit” angegeben werden, so erreicht man dies mit „log” ⇒ „log2”.
Fragebogen
Musterlösung
- Die Zufallsgröße X ist gleichverteilt zwischen 0 und 1/e2 = e–2:
- $$h(X) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{\rm e}^{-2}\hspace{0.05cm}) \hspace{0.15cm}\underline{= -2\,{\rm nat}}\hspace{0.05cm}. $$
- Die Zufallsgröße Y ist dreieckverteilt zwischen ±e0.5:
- $$h(Y) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}\sqrt{ {\rm e} } \cdot \sqrt{ {\rm e} } ) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{ { \rm e } } \hspace{0.05cm}) \hspace{0.15cm}\underline{= +1\,{\rm nat}}\hspace{0.05cm}.$$
- Die Fläche des Parallelogramms ergibt sich zu
- $$F = A \cdot B = {\rm e}^{-2} \cdot {\rm e}^{0.5} = {\rm e}^{-1.5}\hspace{0.05cm}.$$
Damit hat die 2D–WDF im grün hinterlegten Bereich die konstante Höhe C = 1/F = e1.5 und man erhält für die Verbundentropie:
- $$h(XY) = {\rm ln} \hspace{0.1cm} (F) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{\rm e}^{-1.5}\hspace{0.05cm}) \hspace{0.15cm}\underline{= -1.5\,{\rm nat}}\hspace{0.05cm}.$$
Daraus ergibt sich für die Transinformation:
- $$I(X;Y) = h(X) + h(Y) - h(XY) = -2 \,{\rm nat} + 1 \,{\rm nat} - (-1.5 \,{\rm nat} ) \hspace{0.15cm}\underline{= 0.5\,{\rm nat}}\hspace{0.05cm}.$$
(2) Allgemein gilt der Zusammenhang $\log_2(x) = \ln(x)/\ln(2)$. Damit erhält man mit den Ergebnissen der Teilaufgabe (1):
- $$h(X) \ = \ \frac{-2\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= -2.886\,{\rm bit}}\hspace{0.05cm},$$
- $$h(Y) \ = \ \frac{+1\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= +1.443\,{\rm bit}}\hspace{0.05cm},$$
- $$h(XY) \ = \ \frac{-1.5\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= -2.164\,{\rm bit}}\hspace{0.05cm},$$
- $$I(X;Y) \ = \ \frac{0.5\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= 0.721\,{\rm bit}}\hspace{0.05cm}.$$
Oder auch:
- $$I(X;Y) = -2.886 \,{\rm bit} + 1.443 \,{\rm bit}+ 2.164 \,{\rm bit}{= 0.721\,{\rm bit}}\hspace{0.05cm}.$$
(3) Die Transinformation kann auch in der Form I(X; Y) = h(Y) – h(Y|X) geschrieben werden:
- $$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = h(Y) - I(X;Y) = 1 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= 0.5\,{\rm nat}= 0.721\,{\rm bit}}\hspace{0.05cm}.$$
(4) Für die differentielle Rückschlussentropie gilt entsprechend:
- $$h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = h(X) - I(X;Y) = -2 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= -2.5\,{\rm nat}= -3.607\,{\rm bit}}\hspace{0.05cm}.$$
Alle hier berechneten Größen sind in der folgenden Grafik zusammengestellt. Pfeile nach oben kennzeichnen einen positiven Beitrag, Pfeile nach unten einen negativen.
(5) Richtig sind die Lösungsvorschläge 1 bis 3. Nochmals zur Verdeutlichung:
- Für die Transinformation gilt stets $I(X;Y) \ge 0$.
- Im wertdiskreten Fall gibt es keine negative Entropie, jedoch im wertkontinuierlichen.