Aufgaben:Aufgabe 1.2: Verzerrungen? Oder keine Verzerrung?: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID949__Mod_A_1_2.png|right|frame|Betrachtete Sinkensignale für das gegebene Eingangssignal <i>q</i>(<i>t</i>)]]
+
[[Datei:P_ID949__Mod_A_1_2.png|right|frame|Betrachtete Sinkensignale für das gegebene Eingangssignal $q(t)$)]]
Die drei Nachrichtensysteme $S_1$, $S_2$ und $S_3$ werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal mit der Signalfrequenz $f_{\rm N} = 1$ kHz angelegt:
+
Die Nachrichtensysteme &nbsp;$S_1$, &nbsp;$S_2$&nbsp; und &nbsp;$S_3$&nbsp; werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal mit der Signalfrequenz $f_{\rm N} = 1\text{ kHz}$ angelegt:
 
:$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
 
:$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
  
Gemessen werden die Signale am Ausgang der drei Systeme, die in der Grafik dargestellt sind:
+
Gemessen werden die drei Signale am Systemausgang, die in der Grafik dargestellt sind:
 
:$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
 
:$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
 
:$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
 
:$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
Zeile 13: Zeile 13:
  
 
Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.
 
Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.
 +
 +
 +
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Qualitätskriterien#Signal.E2.80.93zu.E2.80.93St.C3.B6r.E2.80.93Leistungsverh.C3.A4ltnis|Signal-zu-Stör-Leistungsverhältnis]] und auf das Kapitel [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]] im Buch &bdquo;Lineare zeitinvariante Systeme&rdquo;.
+
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Modulationsverfahren/Qualitätskriterien#Signal.E2.80.93zu.E2.80.93St.C3.B6r.E2.80.93Leistungsverh.C3.A4ltnis|Signal-zu-Stör-Leistungsverhältnis]]&nbsp; und auf das Kapitel&nbsp; [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]] im Buch &bdquo;Lineare zeitinvariante Systeme&rdquo;.
*Bei nichtlinearen Verzerrungen ist das Sinken–SNR $ρ_v = 1/K^2,$ wobei der Klirrfaktor $K$ das Verhältnis der Effektivwerte aller Oberwellen zum Effektivwert der Grundfrequenz angibt.
+
*Bei nichtlinearen Verzerrungen ist das Sinken–SNR &nbsp;$ρ_v = 1/K^2,$ wobei der Klirrfaktor &nbsp;$K$&nbsp; das Verhältnis der Effektivwerte aller Oberwellen zum Effektivwert der Grundfrequenz angibt.
 
   
 
   
  
Zeile 25: Zeile 28:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind nach dieser Messung über das System $S_1$ möglich?
+
{Welche Aussagen sind nach dieser Messung über das System &nbsp;$S_1$&nbsp; möglich?
 
|type="[]"}
 
|type="[]"}
- $S_1$ könnte ein ideales System sein.
+
- $S_1$&nbsp; könnte ein ideales System sein.
+ $S_1$ könnte ein verzerrungsfreies System sein.
+
+ $S_1$&nbsp; könnte ein verzerrungsfreies System sein.
+ $S_1$ könnte ein linear verzerrendes System sein.
+
+ $S_1$&nbsp; könnte ein linear verzerrendes System sein.
- $S_1$ könnte ein nichtlinear verzerrendes System sein.
+
- $S_1$&nbsp; könnte ein nichtlinear verzerrendes System sein.
  
  

Version vom 3. Dezember 2018, 12:11 Uhr

Betrachtete Sinkensignale für das gegebene Eingangssignal $q(t)$)

Die Nachrichtensysteme  $S_1$,  $S_2$  und  $S_3$  werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal mit der Signalfrequenz $f_{\rm N} = 1\text{ kHz}$ angelegt:

$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$

Gemessen werden die drei Signale am Systemausgang, die in der Grafik dargestellt sind:

$$v_1(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) = 1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t + 1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)= 1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$

Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.



Hinweise:

  • Die Aufgabe gehört zum Kapitel  Qualitätskriterien.
  • Bezug genommen wird insbesondere auf die Seite  Signal-zu-Stör-Leistungsverhältnis  und auf das Kapitel  Nichtlineare Verzerrungen im Buch „Lineare zeitinvariante Systeme”.
  • Bei nichtlinearen Verzerrungen ist das Sinken–SNR  $ρ_v = 1/K^2,$ wobei der Klirrfaktor  $K$  das Verhältnis der Effektivwerte aller Oberwellen zum Effektivwert der Grundfrequenz angibt.


Fragebogen

1

Welche Aussagen sind nach dieser Messung über das System  $S_1$  möglich?

$S_1$  könnte ein ideales System sein.
$S_1$  könnte ein verzerrungsfreies System sein.
$S_1$  könnte ein linear verzerrendes System sein.
$S_1$  könnte ein nichtlinear verzerrendes System sein.

2

Schreiben Sie das zweite Signal in der Form $v_2(t) = α · q(t - τ)$ und bestimmen Sie dessen Kenngrößen.

$\alpha \ = \ $

$τ \ = \ $

$\ \rm μs$

3

Welche Aussagen sind nach dieser Messung über das System $S_2$ möglich?

$S_2$ könnte ein ideales System sein.
$S_2$ könnte ein verzerrungsfreies System sein.
$S_2$ könnte ein linear verzerrendes System sein.
$S_2$ könnte ein nichtlinear verzerrendes System sein.

4

Von welcher Art sind die Verzerrungen beim System $S_3$?

Es handelt sich um lineare Verzerrungen.
Es handelt sich um nichtlineare Verzerrungen.

5

Berechnen Sie das Sinken–SNR $ρ_{v3}$von System $S_3$.

$ρ_{v3} \ = \ $


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1, 2 und 3:

  • Das System $S_1$ könnte durchaus ein ideales System sein, nämlich dann, wenn für alle Frequenzen $f_{\rm N}$ die Bedingung $v(t) = q(t)$ erfüllt wäre.
  • Auch die zweite Alternative ist möglich, da das ideale System ein Sonderfall der verzerrungsfreien Systeme darstellt.
  • Würde bei einer anderen Nachrichtenfrequenz $f_{\rm N} \ne 1$ kHz die Bedingung $v(t) = q(t)$ allerdings nicht erfüllt, so würde ein linear verzerrendes System vorliegen, dessen Frequenzgang bei der Frequenz $f_{\rm N}$ zufällig gleich 1 wäre.
  • Dagegen kann ein nichtlinear verzerrendes System (Vorschlag 4) aufgrund fehlender Oberwellen ausgeschlossen werden.


(2)  Entsprechend den Ausführungen im Kapitel „Harmonische Schwingung” im Buch „Signaldarstellung” gelten folgende Gleichungen:

$$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm} ({A}/{B})\hspace{0.05cm}$$

Angewandt auf das vorliegende Beispiel erhält man

$$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}.$$

Der Dämpfungsfaktor des Systems hat somit den Wert $α = 1.414/2 \hspace{0.15cm}\underline{= 0.707}$, und für die Phase gilt:

$$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = {\pi}/{4}\hspace{0.05cm}.$$

Die Umformung $\cos(\omega_{\rm N} t - \varphi)= \cos[\omega_{\rm N} (t - \tau)]$ erlaubt Aussagen über die Laufzeit:

$$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm \mu s}}\hspace{0.05cm}.$$


(3)  Richtig sinddie Lösungsvorschläge 2 und 3:

  • Das System $S_2$ ist nach den Ausführungen zur Teilaufgabe (1) weder ideal noch nichtlinear verzerrend.
  • Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von $α$ und $τ$ für alle Frequenzen erhalten bleiben oder nicht.
  • Mit einer einzigen Messung bei nur einer Frequenz kann allerdings diese Frage nicht geklärt werden.


(4)  Das Signal $v_3(t)$ beinhaltet eine Oberwelle dritter Ordnung. Deshalb ist die Verzerrung nichtlinear   ⇒  Lösungsvorschlag 2.


(5)  Mit den Amplituden $A_1 = 1.5 \ \rm V$ und $A_3 = -0.3\ \rm V$ erhält man für den Klirrfaktor:

$$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$

Deshalb beträgt das Sinken–SNR entsprechend der angegebenen Gleichung $ρ_{v3} = 1/K_3^{ 2 } = 25$.

Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung. Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor:

$$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$

Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb:   $\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$ Damit ergibt sich die Verzerrungsleistung:

$$P_{\varepsilon 3}= {1}/{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$

Mit der Leistung des Quellensignals, $$P_{q}= {1}/{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$ erhält man unter Berücksichtigung des gerade berechneten Dämpfungsfaktors $ \alpha = 0.75 $:

$$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$