Aufgaben:Aufgabe 3.3Z: Kenngrößenbestimmung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 6: Zeile 6:
 
Wir betrachten die Phasenmodulation der harmonischen Schwingung
 
Wir betrachten die Phasenmodulation der harmonischen Schwingung
 
:$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N}) \hspace{0.05cm},$$
 
:$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N}) \hspace{0.05cm},$$
die bei Voraussetzung einer normierten Trägeramplitude ($A_{\rm T} = 1$) zu folgendem Sendesignal führt:
+
die bei Voraussetzung einer normierten Trägeramplitude  $(A_{\rm T} = 1)$  zu folgendem Sendesignal führt:
:$$ s(t) = \cos \left(\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t) \right)\hspace{0.05cm}.$$
+
:$$ s(t) = \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t) \big]\hspace{0.05cm}.$$
Das Spektrum des dazugehörigen analytischen Signals $s_{\rm TP}(t)$ lautet allgemein:
+
Das Spektrum des dazugehörigen analytischen Signals  $s_{\rm TP}(t)$  lautet allgemein:
 
:$$S_{\rm TP}(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}(\phi_{\rm N}\hspace{0.05cm}+\hspace{0.05cm} 90^\circ) }\cdot \hspace{0.05cm} \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}$$
 
:$$S_{\rm TP}(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}(\phi_{\rm N}\hspace{0.05cm}+\hspace{0.05cm} 90^\circ) }\cdot \hspace{0.05cm} \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}$$
Hierbei bezeichnet man $η = K_{\rm PM} · A_{\rm N}$ als den Modulationsindex.
+
Hierbei bezeichnet man  $η = K_{\rm PM} · A_{\rm N}$  als den Modulationsindex.
 +
 
 +
In der Grafik ist das Spektrum  $S_+(f)$  des analytischen Signals  $s_+(t)$  getrennt nach Real- und Imaginärteil dargestellt. Aus diesem sollen die Kenngrößen  $f_{\rm T}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  und  $η$  ermittelt werden.
 +
 
 +
 
 +
 
  
In der Grafik ist das Spektrum $S_+(f)$ des analytischen Signals $s_+(t)$ getrennt nach Real- und Imaginärteil dargestellt. Aus diesem sollen die Kenngrößen $f_{\rm T}$, $f_{\rm N}$, $ϕ_{\rm N}$ und $η$ ermittelt werden.
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
+
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes Tiefpass-Signal bei Phasenmodulation]].
+
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes Tiefpass-Signal bei Phasenmodulation]].
 
   
 
   
 
*Zur Berechnung des Modulationsindex können Sie folgende Eigenschaft der Besselfunktion ausnutzen:
 
*Zur Berechnung des Modulationsindex können Sie folgende Eigenschaft der Besselfunktion ausnutzen:
Zeile 26: Zeile 30:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Frequenzen $f_{\rm T}$ und $f_{\rm N}$?
+
{Wie groß sind die Frequenzen &nbsp;$f_{\rm T}$&nbsp; und &nbsp;$f_{\rm N}$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm T} \ = \ $  { 40 3% } $\ \rm kHz$  
 
$f_{\rm T} \ = \ $  { 40 3% } $\ \rm kHz$  
 
$f_{\rm N} \ = \ $ { 3 3% } $\ \rm kHz$
 
$f_{\rm N} \ = \ $ { 3 3% } $\ \rm kHz$
  
{Berechnen Sie den Betrag und die Phase von $S_{\rm TP}(f = 3 \ \rm kHz)$.
+
{Berechnen Sie den Betrag und die Phase von &nbsp;$S_{\rm TP}(f = 3 \ \rm kHz)$.
 
|type="{}"}
 
|type="{}"}
 
$|S_{\rm TP}(f = 3 \ \rm kHz)| \ = \ $  { 0.558 3% }
 
$|S_{\rm TP}(f = 3 \ \rm kHz)| \ = \ $  { 0.558 3% }
 
${\rm arc} \ S_{\rm TP}(f = 3\ \rm  kHz) \ = \ $ { 60 3% } $\ \rm Grad$  
 
${\rm arc} \ S_{\rm TP}(f = 3\ \rm  kHz) \ = \ $ { 60 3% } $\ \rm Grad$  
  
{Berechnen Sie den Betrag und die Phase von $S_{\rm TP}(f = 6 \ \rm kHz)$.
+
{Berechnen Sie den Betrag und die Phase von &nbsp;$S_{\rm TP}(f = 6 \ \rm kHz)$.
 
|type="{}"}
 
|type="{}"}
 
$|S_{\rm TP}(f = 6 \ \rm kHz)| \ = \ $ { 0.232 3% }  
 
$|S_{\rm TP}(f = 6 \ \rm kHz)| \ = \ $ { 0.232 3% }  
 
${\rm arc} \ S_{\rm TP}(f = 6\ \rm  kHz) \ = \ $ { 120 3% } $\ \rm Grad$
 
${\rm arc} \ S_{\rm TP}(f = 6\ \rm  kHz) \ = \ $ { 120 3% } $\ \rm Grad$
  
{Wie groß ist die Phase des Quellensignals $q(t)$?  
+
{Wie groß ist die Phase des Quellensignals &nbsp;$q(t)$?  
 
|type="{}"}
 
|type="{}"}
 
$ϕ_{\rm N} \ = \ $ { -30.9--29.1 } $\ \rm Grad$
 
$ϕ_{\rm N} \ = \ $ { -30.9--29.1 } $\ \rm Grad$
  
{Wie groß ist der Modulationsindex $η$?
+
{Wie groß ist der Modulationsindex &nbsp;$η$?
 
|type="{}"}
 
|type="{}"}
 
$η \ = \ $ { 1.5 3% }  
 
$η \ = \ $ { 1.5 3% }  

Version vom 18. Dezember 2018, 17:51 Uhr

Spektrum des analytischen Signals

Wir betrachten die Phasenmodulation der harmonischen Schwingung

$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N}) \hspace{0.05cm},$$

die bei Voraussetzung einer normierten Trägeramplitude  $(A_{\rm T} = 1)$  zu folgendem Sendesignal führt:

$$ s(t) = \cos \hspace{-0.1cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t) \big]\hspace{0.05cm}.$$

Das Spektrum des dazugehörigen analytischen Signals  $s_{\rm TP}(t)$  lautet allgemein:

$$S_{\rm TP}(f) = \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n\hspace{0.05cm}\cdot \hspace{0.05cm}(\phi_{\rm N}\hspace{0.05cm}+\hspace{0.05cm} 90^\circ) }\cdot \hspace{0.05cm} \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}$$

Hierbei bezeichnet man  $η = K_{\rm PM} · A_{\rm N}$  als den Modulationsindex.

In der Grafik ist das Spektrum  $S_+(f)$  des analytischen Signals  $s_+(t)$  getrennt nach Real- und Imaginärteil dargestellt. Aus diesem sollen die Kenngrößen  $f_{\rm T}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  und  $η$  ermittelt werden.




Hinweise:

  • Zur Berechnung des Modulationsindex können Sie folgende Eigenschaft der Besselfunktion ausnutzen:
$${\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm J}_{2} (\eta)= {2}/{\eta} \cdot {\rm J}_{1} (\eta) - {\rm J}_{0} (\eta) \hspace{0.05cm}.$$


Fragebogen

1

Wie groß sind die Frequenzen  $f_{\rm T}$  und  $f_{\rm N}$?

$f_{\rm T} \ = \ $

$\ \rm kHz$
$f_{\rm N} \ = \ $

$\ \rm kHz$

2

Berechnen Sie den Betrag und die Phase von  $S_{\rm TP}(f = 3 \ \rm kHz)$.

$|S_{\rm TP}(f = 3 \ \rm kHz)| \ = \ $

${\rm arc} \ S_{\rm TP}(f = 3\ \rm kHz) \ = \ $

$\ \rm Grad$

3

Berechnen Sie den Betrag und die Phase von  $S_{\rm TP}(f = 6 \ \rm kHz)$.

$|S_{\rm TP}(f = 6 \ \rm kHz)| \ = \ $

${\rm arc} \ S_{\rm TP}(f = 6\ \rm kHz) \ = \ $

$\ \rm Grad$

4

Wie groß ist die Phase des Quellensignals  $q(t)$?

$ϕ_{\rm N} \ = \ $

$\ \rm Grad$

5

Wie groß ist der Modulationsindex  $η$?

$η \ = \ $


Musterlösung

(1)  Bezüglich $|S_+(f)|$ gibt es eine Symmetrie zur Trägerfrequenz $f_{\rm T}\hspace{0.15cm}\underline { = 40 \ \rm kHz}$. Der Abstand zwischen den Spektrallinien beträgt $f_{\rm N}\hspace{0.15cm}\underline { = 3 \ \rm kHz}$.


(2)  Unter Berücksichtigung von $S_{\rm TP}(f = 3{\ \rm kHz}) = S_+(f = 43 \ \rm kHz)$ gilt:

$$|S_{\rm TP}(f = 3\,{\rm kHz})| = \sqrt{0.279^2 + 0.483^2} \hspace{0.15cm}\underline {= 0.558}\hspace{0.05cm},$$
$$ {\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 3\,{\rm kHz}) = \arctan \frac{0.483}{0.279} = \arctan 1.732\hspace{0.15cm}\underline { = 60^\circ} \hspace{0.05cm}.$$

(3)  In analoger Weise zur Teilaufgabe (2) erhält man für die Frequenz $f = 6 \ \rm kHz$:

$$|S_{\rm TP}(f = 6\,{\rm kHz})| = \sqrt{(-0.116)^2 + 0.201^2} \hspace{0.15cm}\underline {= 0.232}\hspace{0.05cm},$$
$${\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 6\,{\rm kHz}) = \arctan \frac{-0.116}{0.201} = 180^\circ - \arctan 1.732 \hspace{0.15cm}\underline {= 120^\circ} \hspace{0.05cm}.$$

(4)  Die Phase lautet für $n = 1$   ⇒   $f = 3 \ \rm kHz$ entsprechend Teilaufgabe (2):

$$ \phi_{\rm N} + 90^\circ = 60^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} = -30^\circ\hspace{0.05cm}.$$

Die Überprüfung dieses Ergebnisses mit $n = 2$   ⇒   $f = 6 \ \rm kHz$ entsprechend Teilaufgabe (3) liefert den gleichen Wert:

$$ 2\cdot (\phi_{\rm N} + 90^\circ) = 120^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} \hspace{0.15cm}\underline {= -30^\circ}\hspace{0.05cm}.$$

(5)  Die angegebene Gleichung kann wie folgt umgeformt werden:

$$\eta = \frac{2 \cdot {\rm J}_{1}{(\eta)}}{{\rm J}_{0}(\eta) + {\rm J}_{2}(\eta)} \hspace{0.05cm}.$$

Mit ${\rm J}_0(η) = 0.512$, ${\rm J}_1(η) = 0.558$ und ${\rm J}_2(η) = 0.232$ erhält man somit:

$$ \eta = \frac{2 \cdot 0.558}{0.512 + 0.232}\hspace{0.15cm}\underline { = 1.5}\hspace{0.05cm}.$$