Aufgaben:Aufgabe 4.10Z: Signalraumkonstellation der 16–QAM: Unterschied zwischen den Versionen
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID1719__Mod_Z_4_9.png|right|frame|Signalraumkonstellation]] | [[Datei:P_ID1719__Mod_Z_4_9.png|right|frame|Signalraumkonstellation]] | ||
− | Wir betrachten weiter das 16–QAM–Verfahren entsprechend dem im Theorieteil angegebenen Blockschaltbild. Die Grafik zeigt die möglichen komplexen Amplitudenkoeffizienten $a = a_{\rm I} + {\rm j} · a_{\rm Q}$. | + | Wir betrachten weiter das 16–QAM–Verfahren entsprechend dem im Theorieteil angegebenen Blockschaltbild. Die Grafik zeigt die möglichen komplexen Amplitudenkoeffizienten $a = a_{\rm I} + {\rm j} · a_{\rm Q}$. |
+ | |||
+ | Für diese Aufgabe soll ebenso wie für die [[Aufgaben:4.10_Signalverläufe_der_16–QAM|Aufgabe 4.10]] vorausgesetzt werden: | ||
+ | * Die möglichen Amplitudenkoeffizienten $a_{\rm I}$ und $a_{\rm Q}$ der beiden Komponentensignale sind $ ±1$ und $±1/3$. | ||
+ | * Der Sendegrundimpuls $g_s(t)$ ist rechteckförmig mit Amplitude $g_0 = 1\ \rm V$ und Dauer $T = 1 \ \rm µ s$. | ||
+ | * Das Quellensignal $q(t)$ vor dem Seriell–Parallel–Wandler ist binär und redundanzfrei. | ||
+ | |||
+ | |||
+ | |||
− | |||
− | |||
− | |||
− | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation|Quadratur–Amplitudenmodulation]]. | + | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation|Quadratur–Amplitudenmodulation]]. |
− | *Zur Lösung der Aufgabe ist die Seite [[Modulationsverfahren/Quadratur–Amplitudenmodulation#QAM.E2.80.93Signalraumkonstellationen|QAM–Signalraumkonstellationen]] hilfreich. | + | *Zur Lösung der Aufgabe ist die Seite [[Modulationsverfahren/Quadratur–Amplitudenmodulation#QAM.E2.80.93Signalraumkonstellationen|QAM–Signalraumkonstellationen]] hilfreich. |
− | *Die zu den farbigen Punkten gehörigen Signale sind in der [[Aufgaben:4.10_Signalverläufe_der_16–QAM|Aufgabe 4.10]] in gleicher Farbe dargestellt. | + | *Die zu den farbigen Punkten gehörigen Signale sind in der [[Aufgaben:4.10_Signalverläufe_der_16–QAM|Aufgabe 4.10]] in gleicher Farbe dargestellt. |
Zeile 22: | Zeile 26: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie groß ist die Bitrate $R_{\rm B}$ des binären Quellensymbols $q(t)$? | + | {Wie groß ist die Bitrate $R_{\rm B}$ des binären Quellensymbols $q(t)$? |
|type="{}"} | |type="{}"} | ||
$R_{\rm B}\ = \ $ { 4 3% } $\ \rm Mbit/s$ | $R_{\rm B}\ = \ $ { 4 3% } $\ \rm Mbit/s$ | ||
− | {Geben Sie den Betrag und die Phase (zwischen | + | {Geben Sie den Betrag und die Phase $($zwischen $±180^\circ)$ für das rote Symbol an ⇒ $a = 1 +{\rm j}$. |
|type="{}"} | |type="{}"} | ||
$|a| \ = \ $ { 1.414 3% } | $|a| \ = \ $ { 1.414 3% } | ||
Zeile 42: | Zeile 46: | ||
${\rm arc} \ a \ = \ $ { -166.57--156.57 } $\ \rm Grad$ | ${\rm arc} \ a \ = \ $ { -166.57--156.57 } $\ \rm Grad$ | ||
− | {Geben Sie den Betrag und die Phase für das violette Symbol an ⇒ $a = -1 | + | {Geben Sie den Betrag und die Phase für das violette Symbol an ⇒ $a = -1 -{\rm j}/3$. |
|type="{}"} | |type="{}"} | ||
$|a| \ = \ $ { 1.054 3% } | $|a| \ = \ $ { 1.054 3% } | ||
${\rm arc} \ a \ = \ ${ -166.57--156.57 } $\ \rm Grad$ | ${\rm arc} \ a \ = \ ${ -166.57--156.57 } $\ \rm Grad$ | ||
− | {Wieviele unterschiedliche Beträge ⇒ $N_{|a|}$ und Phasenlagen ⇒ $N_{arc}$ sind möglich? | + | {Wieviele unterschiedliche Beträge ⇒ $N_{|a|}$ und Phasenlagen ⇒ $N_{arc}$ sind möglich? |
|type="{}"} | |type="{}"} | ||
$N_{|a|}\ = \ $ { 3 } | $N_{|a|}\ = \ $ { 3 } |
Version vom 11. Januar 2019, 16:16 Uhr
Wir betrachten weiter das 16–QAM–Verfahren entsprechend dem im Theorieteil angegebenen Blockschaltbild. Die Grafik zeigt die möglichen komplexen Amplitudenkoeffizienten $a = a_{\rm I} + {\rm j} · a_{\rm Q}$.
Für diese Aufgabe soll ebenso wie für die Aufgabe 4.10 vorausgesetzt werden:
- Die möglichen Amplitudenkoeffizienten $a_{\rm I}$ und $a_{\rm Q}$ der beiden Komponentensignale sind $ ±1$ und $±1/3$.
- Der Sendegrundimpuls $g_s(t)$ ist rechteckförmig mit Amplitude $g_0 = 1\ \rm V$ und Dauer $T = 1 \ \rm µ s$.
- Das Quellensignal $q(t)$ vor dem Seriell–Parallel–Wandler ist binär und redundanzfrei.
Hinweise:
- Die Aufgabe gehört zum Kapitel Quadratur–Amplitudenmodulation.
- Zur Lösung der Aufgabe ist die Seite QAM–Signalraumkonstellationen hilfreich.
- Die zu den farbigen Punkten gehörigen Signale sind in der Aufgabe 4.10 in gleicher Farbe dargestellt.
Fragebogen
Musterlösung
(2) Aus der Geometrie folgt für $a = 1 + {\rm j}$:
- $$a| = \sqrt{1^2 + 1^2}= \sqrt{2}\hspace{0.15cm}\underline { =1.414}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = \arctan \left ({1}/{1} \right ) \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
(3) Der Winkel ergibt sich wie bei der Teilaufgabe (2), der Betrag ist um den Faktor $3$ kleiner: |a| = 0.471.
- $$a| = \sqrt{(1/3)^2 + (1/3)^2}= \sqrt{2}\hspace{0.15cm}\underline { =0.471}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
(4) Für den komplexen Amplitudenkoeffizienten $a = -1 + {\rm j}/3$ erhält man aus der Geometrie:
- $$|a| = \sqrt{1^2 + (1/3)^2}\hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = 180^{\circ} - \arctan \left ( {1}/{3} \right ) = 180^{\circ} - 18.43^{\circ} \hspace{0.15cm}\underline {= 161.57^{\circ}}\hspace{0.05cm}.$$
(5) Das violette Symbol $a = -1 - {\rm j}/3$ hat den gleichen Betrag wie das grüne Symbol nach Teilaufgabe (4), während der Phasenwinkel das Vorzeichen ändert:
- $$|a| \hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm} {\rm arc}\hspace{0.15cm} a \hspace{0.15cm}\underline {= -161.57^{\circ}}\hspace{0.05cm}.$$
(6) Für den Betrag sind $N_{|a|}\hspace{0.15cm}\underline { = 3}$ verschiedene Ergebnisse möglich: $1.414$, $1.054$ und $0.471$.
Dagegen gibt es $N_{arc}\hspace{0.15cm}\underline { = 12}$ mögliche Phasenlagen, nämlich:
- $$ \pm \arctan (1/3) = \pm 18.43^{\circ}, \hspace{0.2cm}\pm \arctan (1) = \pm 45^{\circ}, \hspace{0.2cm}\pm \arctan (3) = \pm 71.57^{\circ}\hspace{0.05cm},$$
- $$\pm (180^{\circ}-71.57^{\circ}) = \pm 108.43^{\circ}, \hspace{0.2cm}\pm (180^{\circ}-45^{\circ}) = \pm 135^{\circ}, \hspace{0.2cm}\pm 161.57^{\circ} \hspace{0.05cm}.$$