Signaldarstellung/Diskrete Fouriertransformation (DFT): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 8: Zeile 8:
 
==Argumente für die diskrete Realisierung der Fouriertransformation==
 
==Argumente für die diskrete Realisierung der Fouriertransformation==
 
<br>
 
<br>
Die '''Fouriertransformation''' gemäß der bisherigen Beschreibung im Kapitel [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Aperiodische Signale &ndash; Impulse]] weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich hohe Selektivität auf und ist deshalb ein ideales theoretisches Hilfsmittel der Spektralanalyse.
+
Die&nbsp; '''Fouriertransformation'''&nbsp; gemäß der bisherigen Beschreibung im Kapitel&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Aperiodische Signale &ndash; Impulse]]&nbsp; weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich hohe Selektivität auf und ist deshalb ein ideales theoretisches Hilfsmittel der Spektralanalyse.
  
Sollen die Spektralanteile $X(f)$ einer Zeitfunktion $x(t)$ numerisch ermittelt werden, so sind die allgemeinen Transformationsgleichungen
+
Sollen die Spektralanteile&nbsp; $X(f)$&nbsp; einer Zeitfunktion&nbsp; $x(t)$&nbsp; numerisch ermittelt werden, so sind die allgemeinen Transformationsgleichungen
 
   
 
   
 
:$$\begin{align*}X(f) & =  \int_{-\infty
 
:$$\begin{align*}X(f) & =  \int_{-\infty
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} {\boldsymbol {\rm Hintransformation}}
+
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Hintransformation}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{Erstes Fourierintegral}
 
  \hspace{0.05cm},\\
 
  \hspace{0.05cm},\\
 
x(t) & =  \int_{-\infty
 
x(t) & =  \int_{-\infty
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
{\boldsymbol {\rm R\ddot{u}cktransformation}}
+
\text{Rücktransformation}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{Zweites Fourierintegral}
 
  \hspace{0.05cm}\end{align*}$$
 
  \hspace{0.05cm}\end{align*}$$
  
Zeile 28: Zeile 28:
 
$\text{Daraus ergibt sich folgende Konsequenz:}$&nbsp;
 
$\text{Daraus ergibt sich folgende Konsequenz:}$&nbsp;
  
Ein '''kontinuierliches Signal''' muss vor der numerischen Bestimmung seiner Spektraleigenschaften zwei Prozesse durchlaufen, nämlich
+
Ein&nbsp; '''kontinuierliches Signal'''&nbsp; muss vor der numerischen Bestimmung seiner Spektraleigenschaften zwei Prozesse durchlaufen, nämlich
*den der '''Abtastung''' zur Diskretisierung, und
+
*den der&nbsp; '''Abtastung'''&nbsp; zur Diskretisierung, und
*den der '''Fensterung''' zur Begrenzung des Integrationsintervalls.}}
+
*den der&nbsp; '''Fensterung'''&nbsp; zur Begrenzung des Integrationsintervalls.}}
  
  
Im Folgenden wird ausgehend von einer aperiodischen Zeitfunktion $x(t)$ und dem dazugehörigen Fourierspektrum $X(f)$ eine für die Rechnerverarbeitung geeignete zeit– und frequenzdiskrete Beschreibung schrittweise entwickelt.
+
Im Folgenden wird ausgehend von einer aperiodischen Zeitfunktion&nbsp; $x(t)$&nbsp; und dem dazugehörigen Fourierspektrum&nbsp; $X(f)$&nbsp; eine für die Rechnerverarbeitung geeignete zeit– und frequenzdiskrete Beschreibung schrittweise entwickelt.
  
  
Zeile 140: Zeile 140:
 
==Von der kontinuierlichen zur diskreten Fouriertransformation==
 
==Von der kontinuierlichen zur diskreten Fouriertransformation==
 
<br>
 
<br>
Aus dem herkömmlichen [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegral]]
+
Aus dem herkömmlichen&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegral]]
 
   
 
   
 
:$$X(f) =\int_{-\infty
 
:$$X(f) =\int_{-\infty
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
  
entsteht durch Diskretisierung $(\text{d}t \to T_{\rm A}$,  $t \to \nu \cdot T_{\rm A}$,  $f \to \mu \cdot f_{\rm A}$,  $T_{\rm A} \cdot f_{\rm A} = 1/N)$ die abgetastete und periodifizierte Spektralfunktion
+
entsteht durch Diskretisierung&nbsp; $(\text{d}t \to T_{\rm A}$,&nbsp; $t \to \nu \cdot T_{\rm A}$,&nbsp; $f \to \mu \cdot f_{\rm A}$,&nbsp; $T_{\rm A} \cdot f_{\rm A} = 1/N)$&nbsp; die abgetastete und periodifizierte Spektralfunktion
 
   
 
   
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
Zeile 151: Zeile 151:
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
  
Es ist berücksichtigt, dass aufgrund der Diskretisierung jeweils die periodifizierten Funktionen einzusetzen sind. Aus Gründen einer vereinfachten Schreibweise nehmen wir nun die folgenden Substitutionen vor:
+
Es ist berücksichtigt, dass aufgrund der Diskretisierung jeweils die periodifizierten Funktionen einzusetzen sind.  
*Die $N$ '''Zeitbereichskoeffizienten''' seien mit der Laufvariablen $\nu$ = 0, ... , $N - 1$:
+
 
 +
Aus Gründen einer vereinfachten Schreibweise nehmen wir nun die folgenden Substitutionen vor:
 +
*Die&nbsp; $N$&nbsp; '''Zeitbereichskoeffizienten'''&nbsp; seien mit der Laufvariablen&nbsp; $\nu = 0$, ... , $N - 1$:
 
:$$d(\nu) =
 
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
*Die $N$ '''Frequenzbereichskoeffizienten''' seien mit der Laufvariablen $\mu$ = 0, ... , $N$ – 1:
+
*Die&nbsp; $N$&nbsp; '''Frequenzbereichskoeffizienten'''&nbsp; seien mit der Laufvariablen&nbsp; $\mu = 0,$ ... , $N$ – 1:
 
:$$D(\mu) = f_{\rm A} \cdot
 
:$$D(\mu) = f_{\rm A} \cdot
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
*Abkürzend wird für den von $N$ abhängigen  '''komplexen Drehfaktor'''  geschrieben:
+
*Abkürzend wird für den von&nbsp; $N$&nbsp; abhängigen&nbsp; '''komplexen Drehfaktor'''&nbsp; geschrieben:
 
:$$w  = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 
:$$w  = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 
  = \cos \left(  {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left(  {2 \pi}/{N}\right)
 
  = \cos \left(  {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left(  {2 \pi}/{N}\right)
 
  \hspace{0.05cm}.$$  
 
  \hspace{0.05cm}.$$  
  
[[Datei:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|Zur Definition der ''Diskreten Fouriertransformation'' (DFT)]]
+
[[Datei:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|Zur Definition der Diskreten Fouriertransformation (DFT) mit&nbsp; $N=8$]]
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
  
Unter dem Begriff  '''Diskreten Fouriertransformation''' (kurz '''DFT''') versteht man die Berechnung der $N$ Spektralkoeffizienten $D(\mu)$ aus den $N$ Signalkoeffizienten $d(\nu)$:
+
Unter dem Begriff&nbsp; '''Diskrete Fouriertransformation'''&nbsp; (kurz '''DFT''')&nbsp; versteht man die Berechnung der&nbsp; $N$&nbsp; Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; aus den&nbsp; $N$&nbsp; Signalkoeffizienten&nbsp; $d(\nu)$:
 
   
 
   
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
  
In der Grafik erkennt man  
+
In der Grafik erkennt man an einem Beispiel
*die $N = 8$ Signalkoeffizienten $d(\nu)$ an der blauen Füllung,  
+
*die&nbsp; $N = 8$&nbsp; Signalkoeffizienten&nbsp; $d(\nu)$&nbsp; an der blauen Füllung,  
*die $N = 8$ Spektralkoeffizienten $D(\mu)$ an der grünen Füllung.}}
+
*die&nbsp; $N = 8$&nbsp; Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; an der grünen Füllung.}}
  
  
 
==Inverse Diskrete Fouriertransformation==
 
==Inverse Diskrete Fouriertransformation==
 
<br>
 
<br>
Die Inverse Diskrete Fouriertransformation (IDFT) beschreibt das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweite Fourierintegral]]
+
Die Inverse Diskrete Fouriertransformation (IDFT) beschreibt das&nbsp;  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweite Fourierintegral]]
 
   
 
   
 
:$$\begin{align*}x(t) & =  \int_{-\infty
 
:$$\begin{align*}x(t) & =  \int_{-\infty
Zeile 189: Zeile 191:
 
   A}}\hspace{0.01cm}.$
 
   A}}\hspace{0.01cm}.$
  
[[Datei:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|Zur Definition der IDFT]]
+
[[Datei:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|Zur Definition der IDFT mit&nbsp; $N=8$]]
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
  
Unter dem Begriff  '''Inversen Diskreten Fouriertransformation''' (kurz '''IDFT''') versteht man die Berechnung der Signalkoeffizienten $d(\nu)$ aus den Spektralkoeffizienten $D(\mu)$:
+
Unter dem Begriff&nbsp; '''Inversen Diskreten Fouriertransformation'''&nbsp; (kurz '''IDFT''')&nbsp; versteht man die Berechnung der Signalkoeffizienten&nbsp; $d(\nu)$&nbsp; aus den Spektralkoeffizienten&nbsp; $D(\mu)$:
 
   
 
   
 
:$$d(\nu) =  \sum_{\mu = 0 }^{N-1}
 
:$$d(\nu) =  \sum_{\mu = 0 }^{N-1}
 
  D(\mu) \cdot  {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
 
  D(\mu) \cdot  {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  
Mit den Laufvariablen $\nu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$ und $\mu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$ gilt auch hier:
+
Mit den Laufvariablen&nbsp; $\nu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; und&nbsp; $\mu = 0,  \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; gilt auch hier:
 
:$$d(\nu) =
 
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
Zeile 211: Zeile 213:
  
 
   
 
   
Ein Vergleich zwischen der [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)#Von_der_kontinuierlichen_zur_diskreten_Fouriertransformation|DFT]] und IDFT zeigt, dass genau der gleiche Algorithmus verwendet werden kann. Die einzigen Unterschiede der IDFT gegenüber der DFT sind:
+
Ein Vergleich zwischen der&nbsp; [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)#Von_der_kontinuierlichen_zur_diskreten_Fouriertransformation|DFT]]&nbsp; und IDFT zeigt, dass genau der gleiche Algorithmus verwendet werden kann. Die einzigen Unterschiede der IDFT gegenüber der DFT sind:
 
*Der Exponent des Drehfaktors ist mit unterschiedlichem Vorzeichen anzusetzen.
 
*Der Exponent des Drehfaktors ist mit unterschiedlichem Vorzeichen anzusetzen.
*Bei der IDFT entfällt die Division durch $N$.
+
*Bei der IDFT entfällt die Division durch&nbsp; $N$.
  
  
Zeile 223: Zeile 225:
  
 
Bei Anwendung von DFT bzw. IDFT ist zu beachten:
 
Bei Anwendung von DFT bzw. IDFT ist zu beachten:
*Nach obigen Definitionen besitzen die DFT–Koeffizienten $d(ν)$ und $D(\mu)$ stets die Einheit der Zeitfunktion.  
+
*Nach obigen Definitionen besitzen die DFT–Koeffizienten&nbsp; $d(ν)$&nbsp; und&nbsp; $D(\mu)$&nbsp; stets die Einheit der Zeitfunktion.  
*Dividiert man $D(\mu)$ durch $f_{\rm A}$, so erhält man den Spektralwert $X(\mu \cdot f_{\rm A})$.
+
*Dividiert man&nbsp; $D(\mu)$&nbsp; durch&nbsp; $f_{\rm A}$, so erhält man den Spektralwert&nbsp; $X(\mu \cdot f_{\rm A})$.
*Die Spektralkoeffizienten $D(\mu)$ müssen stets komplex angesetzt werden, um auch ungerade Zeitfunktionen berücksichtigen zu können.
+
*Die Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; müssen stets komplex angesetzt werden, um auch ungerade Zeitfunktionen berücksichtigen zu können.
*Um auch Bandpass–Signale im äquivalenten TP&ndash;Bereich transformieren zu können, verwendet man meist auch komplexe Zeitkoeffizienten $d(\nu)$.
+
*Um auch Bandpass–Signale im äquivalenten Tiefpass&ndash;Bereich transformieren zu können, verwendet man meist auch komplexe Zeitkoeffizienten&nbsp; $d(\nu)$.
*Als Grundintervall für $\nu$ und  $\mu$ definiert man meist – wie in obiger Grafik – den Bereich von $0$ bis $N - 1$.  
+
*Als Grundintervall für&nbsp; $\nu$&nbsp; und&nbsp; $\mu$&nbsp; definiert man meist – wie in obiger Grafik – den Bereich von&nbsp; $0$&nbsp; bis&nbsp; $N - 1$.  
*Mit den komplexwertigen Zahlenfolgen $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle  = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$  &nbsp; sowie &nbsp; $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  =  \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$ werden DFT und IDFT ähnlich wie die herkömmliche Fouriertransformation symbolisiert:
+
*Mit den komplexwertigen Zahlenfolgen&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle  = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$  &nbsp; sowie &nbsp; $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  =  \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$&nbsp; werden DFT und IDFT ähnlich wie die herkömmliche Fouriertransformation symbolisiert:
 
:$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle  \hspace{0.05cm}.$$  
 
:$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle  \hspace{0.05cm}.$$  
*Ist die Zeitfunktion $x(t)$ bereits auf den Bereich $0 \le t \lt N \cdot T_{\rm A}$ begrenzt, dann geben die von der IDFT ausgegebenen Zeitkoeffizienten direkt die Abtastwerte der Zeitfunktion an:  &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A}).$
+
*Ist die Zeitfunktion&nbsp; $x(t)$&nbsp; bereits auf den Bereich&nbsp; $0 \le t \lt N \cdot T_{\rm A}$&nbsp; begrenzt, dann geben die von der IDFT ausgegebenen Zeitkoeffizienten direkt die Abtastwerte der Zeitfunktion an:  &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A}).$
*Ist $x(t)$ gegenüber dem Grundintervall verschoben, so muss man die im $\text{Beispiel 3}$ gezeigte Zuordnung zwischen $x(t)$ und den Koeffizienten $d(\nu)$ wählen.
+
*Ist&nbsp; $x(t)$&nbsp; gegenüber dem Grundintervall verschoben, so muss man die im&nbsp; $\text{Beispiel 3}$&nbsp; gezeigte Zuordnung zwischen&nbsp; $x(t)$&nbsp; und den Koeffizienten&nbsp; $d(\nu)$&nbsp; wählen.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
 
$\text{Beispiel 3:}$&nbsp;
 
$\text{Beispiel 3:}$&nbsp;
Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls $x(t)$, dessen absolute Breite kleiner ist als $T_{\rm P} = N \cdot T_{\rm A}$.  
+
Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls&nbsp; $x(t)$, dessen absolute Breite kleiner ist als&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
  
[[Datei:P_ID1139__Sig_T_5_1_S7b_neu.png|right|frame|Zur Belegung der DFT-Koeffizienten]]
+
[[Datei:P_ID1139__Sig_T_5_1_S7b_neu.png|right|frame|Zur Belegung der DFT-Koeffizienten mit&nbsp; $N=8$]]
  
Die untere Skizze zeigt die zugeordneten DFT–Koeffizienten gültig für  $N = 8$
+
Die untere Skizze zeigt die zugeordneten DFT–Koeffizienten gültig für&nbsp; $N = 8$
  
*Für  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$ &nbsp;gilt&nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$:
+
*Für&nbsp; $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$&nbsp; gilt&nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$:
  
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
Zeile 249: Zeile 251:
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
*Dagegen sind die Koeffizienten $d(5)$, $d(6)$ und d$(7)$ wie folgt zu setzen:
+
*Dagegen sind die Koeffizienten&nbsp; $d(5)$,&nbsp; $d(6)$&nbsp; und&nbsp; d$(7)$&nbsp; wie folgt zu setzen:
 +
 
 +
:$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A}\big )  $$
  
:$$d(\nu) = x ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A})
+
:$$ \Rightarrow \hspace{0.2cm}d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
$$
 
\Rightarrow \hspace{0.2cm}
 
:$$d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
 
 
d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
 
d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
 
d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$ }}
 
d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$ }}

Version vom 2. September 2019, 14:16 Uhr

Argumente für die diskrete Realisierung der Fouriertransformation


Die  Fouriertransformation  gemäß der bisherigen Beschreibung im Kapitel  Aperiodische Signale – Impulse  weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich hohe Selektivität auf und ist deshalb ein ideales theoretisches Hilfsmittel der Spektralanalyse.

Sollen die Spektralanteile  $X(f)$  einer Zeitfunktion  $x(t)$  numerisch ermittelt werden, so sind die allgemeinen Transformationsgleichungen

$$\begin{align*}X(f) & = \int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Hintransformation}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{Erstes Fourierintegral} \hspace{0.05cm},\\ x(t) & = \int_{-\infty }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm} \text{Rücktransformation}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{Zweites Fourierintegral} \hspace{0.05cm}\end{align*}$$

aus zwei Gründen ungeeignet:

  • Die Gleichungen gelten ausschließlich für zeitkontinuierliche Signale. Mit Digitalrechnern oder Signalprozessoren kann man jedoch nur zeitdiskrete Signale verarbeiten.
  • Für eine numerische Auswertung der beiden Fourierintegrale ist es erforderlich, das jeweilige Integrationsintervall auf einen endlichen Wert zu begrenzen.


$\text{Daraus ergibt sich folgende Konsequenz:}$ 

Ein  kontinuierliches Signal  muss vor der numerischen Bestimmung seiner Spektraleigenschaften zwei Prozesse durchlaufen, nämlich

  • den der  Abtastung  zur Diskretisierung, und
  • den der  Fensterung  zur Begrenzung des Integrationsintervalls.


Im Folgenden wird ausgehend von einer aperiodischen Zeitfunktion  $x(t)$  und dem dazugehörigen Fourierspektrum  $X(f)$  eine für die Rechnerverarbeitung geeignete zeit– und frequenzdiskrete Beschreibung schrittweise entwickelt.


Zeitdiskretisierung – Periodifizierung im Frequenzbereich


Die folgenden Grafiken zeigen einheitlich links den Zeitbereich und rechts den Frequenzbereich. Ohne Einschränkung der Allgemeingültigkeit sind $x(t)$ und $X(f)$ jeweils reell und gaußförmig.

Diskretisierung im Zeitbereich – Periodifizierung im Frequenzbereich

Entsprechend dem Kapitel Zeitdiskrete Signaldarstellung kann man die Abtastung des Zeitsignals $x(t)$ durch die Multiplikation mit einem Diracpuls $p_{\delta}(t)$ beschreiben. Es ergibt sich das im Abstand $T_{\rm A}$ abgetastete Zeitsignal

$${\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

Dieses abgetastete Signal $\text{A}\{ x(t)\}$ transformieren wir nun in den Frequenzbereich. Der Multiplikation des Diracpulses $p_{\delta}(t)$ mit $x(t)$ entspricht im Frequenzbereich die Faltung von $P_{\delta}(f)$ mit $X(f)$. Es ergibt sich das periodifizierte Spektrum $\text{P}\{ X(f)\}$, wobei $f_{\rm P}$ die Frequenzperiode der Funktion $\text{P}\{ X(f)\}$ angibt:

$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm mit }\hspace{0.5cm}f_{\rm P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$

Dieser Zusammenhang wurde ebenfalls bereits im Kapitel Zeitdiskrete Signaldarstellung hergeleitet, jedoch mit etwas anderer Nomenklatur:

  • Das abgetastete Signal nennen wir nun $\text{A}\{ x(t)\}$ anstelle von $x_{\rm A}(t)$.
  • Die Frequenzperiode wird nun mit $f_{\rm P}$ = $1/T_{\rm A}$ anstelle von $f_{\rm A} = 1/T_{\rm A}$ bezeichnet.

Diese Nomenklaturänderung wird auf den nachfolgenden Seiten begründet.

Die obige Grafik zeigt den hier beschriebenen Funktionalzusammenhang. Hierzu ist anzumerken:

  • Die Frequenzperiode $f_{\rm P}$ wurde hier bewusst klein gewählt, so dass die Überlappung der zu summierenden Spektren deutlich zu erkennen ist.
  • In der Praxis sollte $f_{\rm P}$ aufgrund des Abtasttheorems mindestens doppelt so groß sein wie die größte im Signal $x(t)$ enthaltene Frequenz.
  • Ist dies nicht erfüllt, so muss mit Aliasing gerechnet werden – siehe Kapitel Fehlermöglichkeiten bei Anwendung der DFT.


Frequenzdiskretisierung – Periodifizierung im Zeitbereich


Die Diskretisierung von $X(f)$ lässt sich ebenfalls durch eine Multiplikation mit einem Diracpuls beschreiben. Es ergibt sich das im Abstand $f_{\rm A}$ abgetastete Spektrum:

$${\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$

Transformiert man den hier verwendeten Frequenz–Diracpuls (mit Impulsgewichten $f_{\rm A}$) in den Zeitbereich, so erhält man mit $T_{\rm P} = 1/f_{\rm A}$:

$$\sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$

Die Multiplikation mit $X(f)$ entspricht im Zeitbereich der Faltung mit $x(t)$. Man erhält das im Abstand $T_{\rm P}$ periodifizierte Signal $\text{P}\{ x(t)\}$:

$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} {\rm P}\{x(t)\} = x(t) \star \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } )= \sum_{\nu = - \infty }^{+\infty} x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
Diskretisierung im Frequenzbereich – Periodifizierung im Zeitbereich

$\text{Beispiel 1:}$  Dieser Zusammenhang ist in der Grafik veranschaulicht:

  • Aufgrund der groben Frequenzrasterung ergibt sich in diesem Beispiel für die Zeitperiode $T_{\rm P}$ ein relativ kleiner Wert.
  • Deshalb unterscheidet sich das (blaue) periodifizierte Zeitsignal $\text{P}\{ x(t)\}$ aufgrund von Überlappungen deutlich von $x(t)$.


Finite Signaldarstellung


Finite Signale der Diskreten Fouriertransformation (DFT)

Zur so genannten finiten Signaldarstellung kommt man,

  • wenn sowohl die Zeitfunktion $x(t)$
  • als auch die Spektralfunktion $X(f)$


ausschließlich durch ihre Abtastwerte angegeben werden.
Die Grafik ist wie folgt zu interpretieren:

  • Im linken Bild blau eingezeichnet ist die Funktion $\text{A}\{ \text{P}\{ x(t)\}\}$. Diese ergibt sich durch Abtastung der periodifizierten Zeitfunktion $\text{P}\{ x(t)\}$ mit äquidistanten Diracimpulsen im Abstand $T_{\rm A} = 1/f_{\rm P}$.
  • Im rechten Bild grün eingezeichnet ist die Funktion $\text{P}\{ \text{A}\{ X(f)\}\}$. Diese ergibt sich durch Periodifizierung (mit $f_{\rm P}$) der abgetasteten Spektralfunktion $\{ \text{A}\{ X(f)\}\}$.
  • Zwischen dem blauen finiten Signal und dem grünen finiten Signal besteht eine Fourierkorrespondenz, und zwar folgende:
$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
  • Die Diraclinien der periodischen Fortsetzung $\text{P}\{ \text{A}\{ X(f)\}\}$ der abgetasteten Spektralfunktion fallen allerdings nur dann in das gleiche Frequenzraster wie diejenigen von $\text{A}\{ X(f)\}$, wenn die Frequenzperiode $f_{\rm P}$ ein ganzzahliges Vielfaches $(N)$ des Frequenzabtastabstandes $f_{\rm A}$ ist.
  • Deshalb muss bei Anwendung der finiten Signaldarstellung stets die folgende Bedingung erfüllt sein, wobei für die natürliche Zahl $N$ in der Praxis meist eine Zweierpotenz verwendet wird (der obigen Grafik liegt der Wert $N = 8$ zugrunde):
$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$
  • Bei Einhaltung der Bedingung $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$ ist die Reihenfolge von Periodifizierung und Abtastung vertauschbar. Somit gilt:
$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} = {\rm A}\{{\rm P}\{X(f)\}\}\hspace{0.05cm}.$$

$\text{Fazit:}$ 

  • Die Zeitfunktion $\text{P}\{ \text{A}\{ x(t)\}\}$ besitzt die Periode $T_{\rm P} = N \cdot T_{\rm A}$.
  • Die Periode im Frequenzbereich ist $f_{\rm P} = N \cdot f_{\rm A}$.
  • Zur Beschreibung des diskretisierten Zeit– und Frequenzverlaufs reichen somit jeweils $N$ komplexe Zahlenwerte in Form von Impulsgewichten aus.


$\text{Beispiel 2:}$  Es liegt ein impulsartiges Signal $x(t)$ in abgetasteter Form vor, wobei der Abstand zweier Abtastwerte $T_{\rm A} = 1\, {\rm µ s}$ beträgt:

  • Nach einer diskreten Fouriertransformation mit $N = 512$ liegt das Spektrum $X(f)$ in Form von Abtastwerten im Abstand $f_{\rm A} = (N \cdot T_{\rm A})^{–1} \approx 1.953\,\text{kHz} $ vor.
  • Vergrößert man den DFT–Parameter auf $N= 2048$, so ergibt sich ein feineres Frequenzraster mit $f_{\rm A} \approx 488\,\text{Hz}$.


Von der kontinuierlichen zur diskreten Fouriertransformation


Aus dem herkömmlichen  ersten Fourierintegral

$$X(f) =\int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$

entsteht durch Diskretisierung  $(\text{d}t \to T_{\rm A}$,  $t \to \nu \cdot T_{\rm A}$,  $f \to \mu \cdot f_{\rm A}$,  $T_{\rm A} \cdot f_{\rm A} = 1/N)$  die abgetastete und periodifizierte Spektralfunktion

$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} {\rm P}\{x(\nu \cdot T_{\rm A})\}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$

Es ist berücksichtigt, dass aufgrund der Diskretisierung jeweils die periodifizierten Funktionen einzusetzen sind.

Aus Gründen einer vereinfachten Schreibweise nehmen wir nun die folgenden Substitutionen vor:

  • Die  $N$  Zeitbereichskoeffizienten  seien mit der Laufvariablen  $\nu = 0$, ... , $N - 1$:
$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
  • Die  $N$  Frequenzbereichskoeffizienten  seien mit der Laufvariablen  $\mu = 0,$ ... , $N$ – 1:
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
  • Abkürzend wird für den von  $N$  abhängigen  komplexen Drehfaktor  geschrieben:
$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$
Zur Definition der Diskreten Fouriertransformation (DFT) mit  $N=8$

$\text{Definition:}$ 

Unter dem Begriff  Diskrete Fouriertransformation  (kurz DFT)  versteht man die Berechnung der  $N$  Spektralkoeffizienten  $D(\mu)$  aus den  $N$  Signalkoeffizienten  $d(\nu)$:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$

In der Grafik erkennt man an einem Beispiel

  • die  $N = 8$  Signalkoeffizienten  $d(\nu)$  an der blauen Füllung,
  • die  $N = 8$  Spektralkoeffizienten  $D(\mu)$  an der grünen Füllung.


Inverse Diskrete Fouriertransformation


Die Inverse Diskrete Fouriertransformation (IDFT) beschreibt das  zweite Fourierintegral

$$\begin{align*}x(t) & = \int_{-\infty }^{+\infty}X(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm} {\rm d}f\end{align*}$$

in diskretisierter Form:   $d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.01cm}.$

Zur Definition der IDFT mit  $N=8$

$\text{Definition:}$ 

Unter dem Begriff  Inversen Diskreten Fouriertransformation  (kurz IDFT)  versteht man die Berechnung der Signalkoeffizienten  $d(\nu)$  aus den Spektralkoeffizienten  $D(\mu)$:

$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

Mit den Laufvariablen  $\nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$  und  $\mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$  gilt auch hier:

$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A} }\hspace{0.01cm},$$
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} } \hspace{0.01cm},$$
$$w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} \hspace{0.01cm}.$$


Ein Vergleich zwischen der  DFT  und IDFT zeigt, dass genau der gleiche Algorithmus verwendet werden kann. Die einzigen Unterschiede der IDFT gegenüber der DFT sind:

  • Der Exponent des Drehfaktors ist mit unterschiedlichem Vorzeichen anzusetzen.
  • Bei der IDFT entfällt die Division durch  $N$.


Interpretation von DFT und IDFT


Die Grafik zeigt die diskreten Koeffizienten im Zeit– und Frequenzbereich zusammen mit den periodifizierten zeitkontinuierlichen Funktionen.

Zeit– und Frequenzbereichskoeffizienten der DFT

Bei Anwendung von DFT bzw. IDFT ist zu beachten:

  • Nach obigen Definitionen besitzen die DFT–Koeffizienten  $d(ν)$  und  $D(\mu)$  stets die Einheit der Zeitfunktion.
  • Dividiert man  $D(\mu)$  durch  $f_{\rm A}$, so erhält man den Spektralwert  $X(\mu \cdot f_{\rm A})$.
  • Die Spektralkoeffizienten  $D(\mu)$  müssen stets komplex angesetzt werden, um auch ungerade Zeitfunktionen berücksichtigen zu können.
  • Um auch Bandpass–Signale im äquivalenten Tiefpass–Bereich transformieren zu können, verwendet man meist auch komplexe Zeitkoeffizienten  $d(\nu)$.
  • Als Grundintervall für  $\nu$  und  $\mu$  definiert man meist – wie in obiger Grafik – den Bereich von  $0$  bis  $N - 1$.
  • Mit den komplexwertigen Zahlenfolgen  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$   sowie   $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$  werden DFT und IDFT ähnlich wie die herkömmliche Fouriertransformation symbolisiert:
$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$
  • Ist die Zeitfunktion  $x(t)$  bereits auf den Bereich  $0 \le t \lt N \cdot T_{\rm A}$  begrenzt, dann geben die von der IDFT ausgegebenen Zeitkoeffizienten direkt die Abtastwerte der Zeitfunktion an:   $d(\nu) = x(\nu \cdot T_{\rm A}).$
  • Ist  $x(t)$  gegenüber dem Grundintervall verschoben, so muss man die im  $\text{Beispiel 3}$  gezeigte Zuordnung zwischen  $x(t)$  und den Koeffizienten  $d(\nu)$  wählen.


$\text{Beispiel 3:}$  Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls  $x(t)$, dessen absolute Breite kleiner ist als  $T_{\rm P} = N \cdot T_{\rm A}$.

Zur Belegung der DFT-Koeffizienten mit  $N=8$

Die untere Skizze zeigt die zugeordneten DFT–Koeffizienten gültig für  $N = 8$

  • Für  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$  gilt  $d(\nu) = x(\nu \cdot T_{\rm A})$:
$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} d(1) = x (T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(2) = x (2T_{\rm A})\hspace{0.05cm}, $$
$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$
  • Dagegen sind die Koeffizienten  $d(5)$,  $d(6)$  und  d$(7)$  wie folgt zu setzen:
$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big ) $$
$$ \Rightarrow \hspace{0.2cm}d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$

Aufgaben zum Kapitel


Aufgabe 5.2: Inverse Diskrete Fouriertransformation

Aufgabe 5.2Z: DFT eines Dreieckimpulses