Aufgaben:Aufgabe 5.3: Mittlerer Quadratischer Fehler: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 110: Zeile 110:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Mit den DFT–Parametern $N = 512$ und $f_{\rm A} \cdot T = 1/8$ folgt nach Multiplikation der beiden Größen:  
+
'''(1)'''  Mit den DFT–Parametern  $N = 512$  und  $f_{\rm A} \cdot T = 1/8$  folgt nach Multiplikation der beiden Größen:  
 
:$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
 
:$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
Dadurch wird der Frequenzbereich $–f_{\rm P}/2 \leq f < f_{\rm P}/2$ erfasst:
+
*Dadurch wird der Frequenzbereich&nbsp; $–f_{\rm P}/2 \leq f < f_{\rm P}/2$&nbsp; erfasst:
 
:$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$
 
:$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Die Periodifizierung der Zeitfunktion basiert auf dem Parameter $T_{\rm P} = 1/f_{\rm A} = 8T$. Der Abstand zweier Abtastwerte beträgt somit
+
 
 +
'''(2)'''&nbsp; Die Periodifizierung der Zeitfunktion basiert auf dem Parameter&nbsp; $T_{\rm P} = 1/f_{\rm A} = 8T$.  
 +
*Der Abstand zweier Abtastwerte beträgt somit
 
:$$T_{\rm A}/T =  \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$
 
:$$T_{\rm A}/T =  \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$
 +
  
 
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1 &nbsp; &rArr; &nbsp;  Erhöhung des Abbruchfehlers</u>:
 
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1 &nbsp; &rArr; &nbsp;  Erhöhung des Abbruchfehlers</u>:
*Mit dieser Maßnahme wird gleichzeitig $T_{\rm P}$ von $8T$ auf $4T$ halbiert.  
+
*Mit dieser Maßnahme wird gleichzeitig&nbsp; $T_{\rm P}$&nbsp; von&nbsp; $8T$&nbsp; auf&nbsp; $4T$&nbsp; halbiert.  
*Berücksichtigt werden somit nur noch Abtastwerte im Bereich $–2T \leq t < 2T$, wodurch der Abbruchfehler erhöht wird.  
+
*Berücksichtigt werden somit nur noch Abtastwerte im Bereich&nbsp; $–2T \leq t < 2T$, wodurch der Abbruchfehler erhöht wird.  
*Der mittlere quadratische Fehler $(\rm MQF)$ steigt dadurch beim Gaußimpuls $x_1(t)$ von $0.15 \cdot 10^{-15}$ auf $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.
+
*Der mittlere quadratische Fehler&nbsp; $(\rm MQF)$&nbsp; steigt dadurch beim Gaußimpuls&nbsp; $x_1(t)$&nbsp; von&nbsp; $0.15 \cdot 10^{-15}$&nbsp; auf&nbsp; $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.
 +
 
  
  
 
'''(4)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2 &nbsp; &rArr; &nbsp;  Erhöhung des Aliasingfehlers</u>:
 
'''(4)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2 &nbsp; &rArr; &nbsp;  Erhöhung des Aliasingfehlers</u>:
*Durch die Halbierung von $f_{\rm A}$ wird auch $f_{\rm P}$ halbiert.  
+
*Durch die Halbierung von&nbsp; $f_{\rm A}$&nbsp; wird auch&nbsp; $f_{\rm P}$&nbsp; halbiert.  
 
*Dadurch wird der Aliasingfehler etwas größer bei gleichzeitig kleinerem Abbruchfehler.  
 
*Dadurch wird der Aliasingfehler etwas größer bei gleichzeitig kleinerem Abbruchfehler.  
*Insgesamt steigt beim Gaußimpuls $x_1(t)$ der mittlere quadratische Fehler $(\rm MQF)$ von $1.5 \cdot 10^{-16}$ auf $3.3 \cdot 10^{-16}$.
+
*Insgesamt steigt beim Gaußimpuls&nbsp; $x_1(t)$&nbsp; der mittlere quadratische Fehler&nbsp; $(\rm MQF)$&nbsp; von&nbsp; $1.5 \cdot 10^{-16}$&nbsp; auf&nbsp; $3.3 \cdot 10^{-16}$.
 +
 
  
  
 
'''(5)'''&nbsp; Richtig sind die <u> Lösungsvorschläge 1 und 2</u>:
 
'''(5)'''&nbsp; Richtig sind die <u> Lösungsvorschläge 1 und 2</u>:
 
*Wie aus der Grafik zu ersehen ist, trifft die letzte Aussage nicht zu im Gegensatz zu den ersten beiden.  
 
*Wie aus der Grafik zu ersehen ist, trifft die letzte Aussage nicht zu im Gegensatz zu den ersten beiden.  
*Aufgrund des langsamen, si–förmigen Abfalls der Spektralfunktion dominiert der Aliasingfehler.  
+
*Aufgrund des langsamen,&nbsp; $\rm si$–förmigen Abfalls der Spektralfunktion dominiert der Aliasingfehler.  
*Der $\rm MQF$–Wert ist bei $f_{\rm A} \cdot T = 1/8$ mit $1.4 \cdot 10^{-5}$ deshalb deutlich größer als beim Gaußimpuls $(1.5 \cdot 10^{-16})$.
+
*Der&nbsp; $\rm MQF$–Wert ist bei&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; mit&nbsp; $1.4 \cdot 10^{-5}$&nbsp; deshalb deutlich größer als beim Gaußimpuls&nbsp; $(1.5 \cdot 10^{-16})$.
 +
 
  
  
 
'''(6)'''&nbsp; Richtig  ist der <u>Lösungsvorschlag 3</u>:
 
'''(6)'''&nbsp; Richtig  ist der <u>Lösungsvorschlag 3</u>:
*Die Spektralfunktion $X_3(f)$ hat hier einen rechteckförmigen Vorlauf, so dass die beiden ersten Aussagen nicht zutreffen.  
+
*Die Spektralfunktion&nbsp; $X_3(f)$&nbsp; hat hier einen rechteckförmigen Vorlauf, so dass die beiden ersten Aussagen nicht zutreffen.  
*Dagegen ist bei dieser si–förmigen Zeitfunktion ein Abbruchfehler unvermeidbar. Dieser führt zu den angegebenen großen $\rm MQF$–Werten.  
+
*Dagegen ist bei dieser&nbsp; $\rm si$–förmigen Zeitfunktion ein Abbruchfehler unvermeidbar. Dieser führt zu den angegebenen großen&nbsp; $\rm MQF$–Werten.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
 
[[Category:Aufgaben zu Signaldarstellung|^5. Zeit- und frequenzdiskrete Signaldarstellung^]]
 
[[Category:Aufgaben zu Signaldarstellung|^5. Zeit- und frequenzdiskrete Signaldarstellung^]]

Version vom 15. Oktober 2019, 09:44 Uhr

Gaußimpuls, Rechteckimpuls, Spaltimpuls und einige Kenngrößen

Wir betrachten drei impulsartige Signale, nämlich

  • einen  Gaußimpuls  mit Amplitude  $A$  und äquivalenter Dauer  $T$:
$$x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},$$
  • einen  Rechteckimpuls  $x_2(t)$  mit Amplitude  $A$  und (äquivalenter) Dauer  $T$:
$$x_2(t) = \left\{ \begin{array}{c} A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |t| < T/2 \hspace{0.05cm}, \\ |t| > T/2 \hspace{0.05cm}, \\ \end{array}$$
  • einen so genannten  Spaltimpuls  gemäß nachfolgender Definition:
$$x_3(t) = A \cdot {\rm si}(\pi \cdot t/ T) ,\hspace{0.15cm}{\rm si}(x) = \sin(x)/x\hspace{0.05cm}.$$

Die Signalparameter seien jeweils  $A = 1\ {\rm V}$  und  $T = 1\ {\rm ms}$.

Die konventionelle  Fouriertransformation  führt zu folgenden Spektralfunktionen:

  • $X_1(f)$  ist ebenfalls gaußförmig,
  • $X_2(f)$  verläuft entsprechend der  $\rm si$–Funktion,
  • $X_3(f)$  ist für  $|f| < 1/(2 T)$  konstant und außerhalb Null.


Für alle Spektralfunktionen gilt  $X(f = 0) = A \cdot T$.

Ermittelt man das frequenzdiskrete Spektrum durch die  Diskrete Fouriertransformation  (DFT) mit den DFT-Parametern

  • $N = 512$   ⇒   Anzahl der berücksichtigten Abtastwerte im Zeit– und Frequenzbereich,
  • $f_{\rm A}$   ⇒   Stützstellenabstand im Frequenzbereich,


so wird dies aufgrund von Abbruch– und/oder Aliasingfehler zu Verfälschungen führen.

Die weiteren DFT–Parameter liegen mit  $N$  und  $f_{\rm A}$  eindeutig fest. Für diese gilt:

$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm P}/N \hspace{0.05cm}.$$

Die Genauigkeit der jeweiligen DFT–Approximation wird durch den  mittleren quadratischen Fehler  (MQF) erfasst:

$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$

Die sich ergebenden MQF–Werte sind in obiger Grafik angegeben, gültig für  $N = 512$  sowie für

  • $f_{\rm A} \cdot T = 1/4$,
  • $f_{\rm A} \cdot T = 1/8$,
  • $f_{\rm A} \cdot T = 1/16$.





Hinweise:



Fragebogen

1

Welcher Bereich  $|f| \leq f_{\text{max}}$  wird mit  $N = 512$  und  $f_{\rm A} \cdot T = 1/8$  erfasst?

$f_{\text{max}} \cdot T\ = \ $

2

In welchem Zeitabstand  $T_{\rm A}$  liegen die Abtastwerte von  $x(t)$  vor?

$T_{\rm A}/T\ = \ $

3

Aufgrund welcher Effekte erhöht sich der MQF–Wert für den Gaußimpuls, wenn man  $f_{\rm A} \cdot T = 1/4$  anstelle von  $f_{\rm A} \cdot T = 1/8$  verwendet?

Der Abbruchfehler wird signifikant vergrößert.
Der Aliasingfehler wird signifikant vergrößert.

4

Aufgrund welcher Effekte erhöht sich der MQF–Wert für den Gaußimpuls, wenn man  $f_{\rm A} \cdot T = 1/16$  anstelle von $f_{\rm A} \cdot T = 1/4$  verwendet?

Der Abbruchfehler wird signifikant vergrößert.
Der Aliasingfehler wird signifikant vergrößert.

5

Vergleichen Sie die MQF–Werte des Rechteckimpulses  $x_2(t)$  mit denen des Gaußimpulses  $x_1(t)$. Welche der folgenden Aussagen treffen zu?

$\rm MQF$  wird größer, da die Spektralfunktion  $X_2(f)$  asymptotisch langsamer abfällt als  $X_1(f)$.
Es dominiert der Aliasingfehler.
Es dominiert der Abbruchfehler.

6

Vergleichen Sie die MQF–Werte des Spaltimpulses  $x_3(t)$  mit denen des Gaußimpulses  $x_1(t)$. Welche der folgenden Aussagen treffen zu?

$\rm MQF$  wird größer, da die Spektralfunktion  $X_3(f)$  asymptotisch langsamer abfällt als  $X_1(f)$.
Es dominiert der Aliasingfehler.
Es dominiert der Abbruchfehler.


Musterlösung

(1)  Mit den DFT–Parametern  $N = 512$  und  $f_{\rm A} \cdot T = 1/8$  folgt nach Multiplikation der beiden Größen:

$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
  • Dadurch wird der Frequenzbereich  $–f_{\rm P}/2 \leq f < f_{\rm P}/2$  erfasst:
$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$


(2)  Die Periodifizierung der Zeitfunktion basiert auf dem Parameter  $T_{\rm P} = 1/f_{\rm A} = 8T$.

  • Der Abstand zweier Abtastwerte beträgt somit
$$T_{\rm A}/T = \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$


(3)  Richtig ist der Lösungsvorschlag 1   ⇒   Erhöhung des Abbruchfehlers:

  • Mit dieser Maßnahme wird gleichzeitig  $T_{\rm P}$  von  $8T$  auf  $4T$  halbiert.
  • Berücksichtigt werden somit nur noch Abtastwerte im Bereich  $–2T \leq t < 2T$, wodurch der Abbruchfehler erhöht wird.
  • Der mittlere quadratische Fehler  $(\rm MQF)$  steigt dadurch beim Gaußimpuls  $x_1(t)$  von  $0.15 \cdot 10^{-15}$  auf  $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.


(4)  Richtig ist der Lösungsvorschlag 2   ⇒   Erhöhung des Aliasingfehlers:

  • Durch die Halbierung von  $f_{\rm A}$  wird auch  $f_{\rm P}$  halbiert.
  • Dadurch wird der Aliasingfehler etwas größer bei gleichzeitig kleinerem Abbruchfehler.
  • Insgesamt steigt beim Gaußimpuls  $x_1(t)$  der mittlere quadratische Fehler  $(\rm MQF)$  von  $1.5 \cdot 10^{-16}$  auf  $3.3 \cdot 10^{-16}$.


(5)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Wie aus der Grafik zu ersehen ist, trifft die letzte Aussage nicht zu im Gegensatz zu den ersten beiden.
  • Aufgrund des langsamen,  $\rm si$–förmigen Abfalls der Spektralfunktion dominiert der Aliasingfehler.
  • Der  $\rm MQF$–Wert ist bei  $f_{\rm A} \cdot T = 1/8$  mit  $1.4 \cdot 10^{-5}$  deshalb deutlich größer als beim Gaußimpuls  $(1.5 \cdot 10^{-16})$.


(6)  Richtig ist der Lösungsvorschlag 3:

  • Die Spektralfunktion  $X_3(f)$  hat hier einen rechteckförmigen Vorlauf, so dass die beiden ersten Aussagen nicht zutreffen.
  • Dagegen ist bei dieser  $\rm si$–förmigen Zeitfunktion ein Abbruchfehler unvermeidbar. Dieser führt zu den angegebenen großen  $\rm MQF$–Werten.