Aufgaben:Aufgabe 2.3: Sinusförmige Kennlinie: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID894__LZI_A_2_3.png|right|frame|Sinusförmige Kennlinie]]
 
[[Datei:P_ID894__LZI_A_2_3.png|right|frame|Sinusförmige Kennlinie]]
Wie betrachten ein System mit Eingang $x(t)$ und Ausgang $y(t)$. Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet.
+
Wie betrachten ein System mit Eingang  $x(t)$  und Ausgang  $y(t)$. Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet.
  
Der Zusammenhang zwischen dem Eingangssignal $x(t)$ und dem Ausgangssignal $y(t)$ ist im Bereich zwischen $-\pi/2$ und $+\pi/2$ durch die folgende Kennlinie gegeben.  
+
Der Zusammenhang zwischen dem Eingangssignal  $x(t)$  und dem Ausgangssignal  $y(t)$  ist im Bereich zwischen  $-\pi/2$  und  $+\pi/2$  durch die folgende Kennlinie gegeben.  
 
:$$g(x) =  \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} -
 
:$$g(x) =  \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} -
 
  \hspace{0.05cm}\text{...}$$
 
  \hspace{0.05cm}\text{...}$$
  
Der zweite Teil dieser Gleichung beschreibt dabei die Reihenentwicklung der Sinusfunktion. Als Näherungen für die nichtlineare Kennlinie werden in dieser Aufgabe verwendet:
+
Der zweite Teil dieser Gleichung beschreibt dabei die Reihenentwicklung der Sinusfunktion.  
 +
 
 +
Als Näherungen für die nichtlineare Kennlinie werden in dieser Aufgabe verwendet:
 
:$$g_1(x) = x\hspace{0.05cm},$$
 
:$$g_1(x) = x\hspace{0.05cm},$$
 
:$$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$
 
:$$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$
 
:$$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$
 
:$$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$
  
Es wird stets das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ vorausgesetzt, wobei für die (dimensionslose) Signalamplitude die Werte $A = 0.5$, $A = 1.0$ und $A = 1.5$ zu betrachten sind.
+
Es wird stets das Eingangssignal  $x(t) = A \cdot \cos(\omega_0 \cdot t)$  vorausgesetzt, wobei für die (dimensionslose) Signalamplitude die Werte  $A = 0.5$,  $A = 1.0$  und  $A = 1.5$  zu betrachten sind.
 +
 
 +
 
 +
 
  
  
Zeile 22: Zeile 27:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe bezieht sich auf das Kapitel  [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
+
*Die Aufgabe bezieht sich auf das Kapitel  [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
*Die sich ergebenden Signalverläufe für $x(t)$ und $y(t)$ sind auf der Seite [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen#Beschreibung_nichtlinearer_Systeme|Beschreibung nichtlinearer Systeme]] grafisch dargestellt.
+
*Die sich ergebenden Signalverläufe für  $x(t)$  und  $y(t)$  sind auf der Seite  [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen#Beschreibung_nichtlinearer_Systeme|Beschreibung nichtlinearer Systeme]]  grafisch dargestellt.
 
   
 
   
*Alle hier abgefragten Leistungen beziehen sich auf den Widerstand $R = 1 \ \rm \Omega$ und haben somit die Einheit ${\rm V}^2$.
+
*Alle hier abgefragten Leistungen beziehen sich auf den Widerstand  $R = 1 \ \rm \Omega$  und haben somit die Einheit  ${\rm V}^2$.
 
*Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
 
*Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
 
:$$\cos^3(\alpha) =  {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha)
 
:$$\cos^3(\alpha) =  {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha)
Zeile 37: Zeile 42:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Klirrfaktor $K$ erhält man mit der Kennliniennäherung $\underline{g_1(x)}$ unabhängig von der Amplitude $A$ des Eingangssignals?
+
{Welchen Klirrfaktor&nbsp; $K$&nbsp; erhält man mit der Kennliniennäherung&nbsp; $\underline{g_1(x)}$&nbsp; unabhängig von der Amplitude&nbsp; $A$&nbsp; des Eingangssignals?
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 0. } $\ \%$
 
$K \ = \ $ { 0. } $\ \%$
  
  
{Berechnen Sie den Klirrfaktor $K$  für das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ und die Näherung $\underline{g_3(x)}$. <br>Welche Werte ergeben sich für $A = 0.5$ und $A = 1.0$?
+
{Berechnen Sie den Klirrfaktor&nbsp; $K$&nbsp; für das Eingangssignal&nbsp; $x(t) = A \cdot \cos(\omega_0 \cdot t)$&nbsp; und die Näherung&nbsp; $\underline{g_3(x)}$. <br>Welche Werte ergeben sich für&nbsp; $A = 0.5$&nbsp; und&nbsp; $A = 1.0$?
 
|type="{}"}
 
|type="{}"}
 
$A = 0.5\hspace{-0.08cm}:\ \ K \ = \ $  { 1.08 3% } $\ \%$
 
$A = 0.5\hspace{-0.08cm}:\ \ K \ = \ $  { 1.08 3% } $\ \%$
Zeile 48: Zeile 53:
  
  
{Wie lautet der Klirrfaktor für $\underline{A = 1.0}$ unter Berücksichtigung der Näherung  $\underline{g_5(x)}$?
+
{Wie lautet der Klirrfaktor für&nbsp; $\underline{A = 1.0}$&nbsp; unter Berücksichtigung der Näherung&nbsp; $\underline{g_5(x)}$?
 
|type="{}"}
 
|type="{}"}
 
$K \ =  \ $ { 4.45 3% } $\ \%$
 
$K \ =  \ $ { 4.45 3% } $\ \%$
  
  
{Welche der folgenden Aussagen treffen zu? Hierbei bezeichnet $K$  den Klirrfaktor der Sinusfunktion $g(x)$. <br>$K_{\rm g3}$ und $K_{\rm g5}$   basieren auf den Näherungen $g_3(x)$ und $g_5(x)$.
+
{Welche der folgenden Aussagen treffen zu? Hierbei bezeichnet&nbsp; $K$&nbsp; den Klirrfaktor der Sinusfunktion&nbsp; $g(x)$. <br>$K_{\rm g3}$&nbsp; und&nbsp; $K_{\rm g5}$&nbsp; basieren auf den Näherungen&nbsp; $g_3(x)$&nbsp; bzw.&nbsp; $g_5(x)$.
 
|type="[]"}
 
|type="[]"}
+ $K_{\rm g5}$ stellt im Allgemeinen eine bessere Näherung für $K$ dar als $K_{\rm g3}$.
+
+ $K_{\rm g5}$&nbsp; stellt im Allgemeinen eine bessere Näherung für&nbsp; $K$&nbsp; dar als&nbsp; $K_{\rm g3}$.
- Für $A = 1.0$ &nbsp;gilt&nbsp; $K_{\rm g3} < K_{\rm g5}$.
+
- Für&nbsp; $A = 1.0$ &nbsp;gilt&nbsp; $K_{\rm g3} < K_{\rm g5}$.
+ Für $A = 0.5$ &nbsp;wird&nbsp; $K_{\rm g3} \approx K_{\rm g5}$  gelten.
+
+ Für&nbsp; $A = 0.5$ &nbsp;wird&nbsp; $K_{\rm g3} \approx K_{\rm g5}$  gelten.
  
  

Version vom 28. Oktober 2019, 17:34 Uhr

Sinusförmige Kennlinie

Wie betrachten ein System mit Eingang  $x(t)$  und Ausgang  $y(t)$. Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet.

Der Zusammenhang zwischen dem Eingangssignal  $x(t)$  und dem Ausgangssignal  $y(t)$  ist im Bereich zwischen  $-\pi/2$  und  $+\pi/2$  durch die folgende Kennlinie gegeben.

$$g(x) = \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \hspace{0.05cm}\text{...}$$

Der zweite Teil dieser Gleichung beschreibt dabei die Reihenentwicklung der Sinusfunktion.

Als Näherungen für die nichtlineare Kennlinie werden in dieser Aufgabe verwendet:

$$g_1(x) = x\hspace{0.05cm},$$
$$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$
$$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$

Es wird stets das Eingangssignal  $x(t) = A \cdot \cos(\omega_0 \cdot t)$  vorausgesetzt, wobei für die (dimensionslose) Signalamplitude die Werte  $A = 0.5$,  $A = 1.0$  und  $A = 1.5$  zu betrachten sind.





Hinweise:

  • Alle hier abgefragten Leistungen beziehen sich auf den Widerstand  $R = 1 \ \rm \Omega$  und haben somit die Einheit  ${\rm V}^2$.
  • Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
$$\cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}, $$
$$ \cos^5(\alpha) = {10}/{16} \cdot \cos(\alpha) + {5}/{16} \cdot \cos(3\alpha) + {1}/{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$


Fragebogen

1

Welchen Klirrfaktor  $K$  erhält man mit der Kennliniennäherung  $\underline{g_1(x)}$  unabhängig von der Amplitude  $A$  des Eingangssignals?

$K \ = \ $

$\ \%$

2

Berechnen Sie den Klirrfaktor  $K$  für das Eingangssignal  $x(t) = A \cdot \cos(\omega_0 \cdot t)$  und die Näherung  $\underline{g_3(x)}$.
Welche Werte ergeben sich für  $A = 0.5$  und  $A = 1.0$?

$A = 0.5\hspace{-0.08cm}:\ \ K \ = \ $

$\ \%$
$A = 1.0\hspace{-0.08cm}:\ \ K \ = \ $

$\ \%$

3

Wie lautet der Klirrfaktor für  $\underline{A = 1.0}$  unter Berücksichtigung der Näherung  $\underline{g_5(x)}$?

$K \ = \ $

$\ \%$

4

Welche der folgenden Aussagen treffen zu? Hierbei bezeichnet  $K$  den Klirrfaktor der Sinusfunktion  $g(x)$.
$K_{\rm g3}$  und  $K_{\rm g5}$  basieren auf den Näherungen  $g_3(x)$  bzw.  $g_5(x)$.

$K_{\rm g5}$  stellt im Allgemeinen eine bessere Näherung für  $K$  dar als  $K_{\rm g3}$.
Für  $A = 1.0$  gilt  $K_{\rm g3} < K_{\rm g5}$.
Für  $A = 0.5$  wird  $K_{\rm g3} \approx K_{\rm g5}$ gelten.


Musterlösung

(1)  Die sehr ungenaue Näherung $g_1(x) = x$ ist linear in $x$ und führt deshalb auch nicht zu nichtlinearen Verzerrungen. Damit ergibt sich für den Klirrfaktor $\underline{K = 0}$.


(2)  Das analytische Spektrum (nur positive Frequenzen) des Eingangssignals lautet:

$$X_+(f) = A \cdot {\rm \delta}(f- f_0) .$$

Am Ausgang der nichtlinearen Kennlinie $g_3(x)$ liegt dann folgendes Signal an:

$$y(t) = A \cdot {\rm cos}(\omega_0 t ) - \frac{A^3}{6} \cdot {\rm cos}^3(\omega_0 t )= A \cdot {\rm cos}(\omega_0 t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(\omega_0 t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(3\omega_0 t ) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t ).$$

Für die Koeffizienten $A_1$ und $A_3$ erhält man durch Koeffizientenvergleich:

$$A_1 = A - {A^3}\hspace{-0.1cm}/{8}, \hspace{0.5cm}A_3 = - {A^3}\hspace{-0.1cm}/{24}.$$

Mit $A = 0.5$ ergibt sich $A_1 \approx 0.484$ und $A_3 \approx 0.005$. Somit lautet der Klirrfaktor:

$$K = K_3 ={|A_3|}/{A_1}= {0.005}/{0.484} \hspace{0.15cm}\underline{ = 1.08\%}.$$

Anzumerken ist, dass bei der Näherung $g_3(x)$ nur der kubische Anteil $K_3$ des Klirrfaktors wirksam ist.

Für $A = 1.0$ und $A = 1.5$ ergeben sich folgende Zahlenwerte:

$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx -0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%}\; \; \Rightarrow \; \; K_{g3},$$
$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx -0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$


(3)  In ähnlicher Weise wie beim Unterpunkt (2) gilt nun

$$y(t) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t )+ A_5 \cdot {\rm cos}(5\omega_0 t )$$

mit folgenden Koeffizienten:

$$A_1 = A - {A^3}\hspace{-0.1cm}/{8} + {A^5}\hspace{-0.1cm}/{192},\hspace{0.3cm} A_3 = - {A^3}\hspace{-0.1cm}/{24} + {A^5}\hspace{-0.1cm}/{384},\hspace{0.3cm} A_5 = {A^5}\hspace{-0.1cm}/{1920}.$$

Daraus ergeben sich mit $A=1$ die Zahlenwerte:

$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm} A_3 \approx -0.042 +0.003 = -0.039,\hspace{0.3cm} A_5 \approx 0.0005$$
$$\Rightarrow \hspace{0.3cm}K_3 = {|A_3|}/{A_1}= 0.0443,\hspace{0.3cm}K_5 = {|A_5|}/{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2} \hspace{0.15cm}\underline{\approx 4.45\%} \; \; \Rightarrow \; \; K_{g5}.$$


(4)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Der Ansatz $g_5(x)$ ist im gesamten Bereich eine bessere Näherung für die Sinusfunktion $g(x)$ als die Näherung $g_3(x)$.
  • Deshalb ist der in der Teilaufgabe (3) berechnete Wert $K_{g5}$ eine bessere Näherung für den tatsächlichen Klirrfaktor als $K_{g3}$.
    die erste Aussage ist somit richtig.
  • Die zweite Aussage ist falsch, wie schon die Berechnung für $A=1$ gezeigt hat: $K_{g3} \approx 4.76 \%$ ist größer als $K_{g5} \approx 4.45 \%$.
  • Der Grund hierfür ist, dass $g_3(x)$ unterhalb von $g_5(x)$ liegt und damit auch eine größere Abweichung vom linearen Verlauf vorliegt.
  • Für $A=0.5$ wird $K_{g5} \approx K_{g3} = 1.08 \%$ gelten.
  • Schon die Kennlinie auf der Angabenseite zeigt, dass für $|x| \le 0.5$ die beiden Funktionen $g_3(x)$ und $g_5(x)$ innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind.
  • Damit ergeben sich auch gleiche Klirrfaktoren.