Aufgaben:Aufgabe 2.6Z: Synchrondemodulator: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID913__LZI_Z_2_6_neu.png|right|frame|AM–Modulator (oben) & Synchrondemodulator (unten)]]
+
[[Datei:P_ID913__LZI_Z_2_6_neu.png|right|frame|AM–Modulator (oben) dowie Synchrondemodulator (unten)]]
 
Das dargestellte Blockschaltbild zeigt ein Übertragungssystem  
 
Das dargestellte Blockschaltbild zeigt ein Übertragungssystem  
*mit [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Zweiseitenband-Amplitudenmodulation]] (ZSB-AM)  
+
*mit  [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Zweiseitenband-Amplitudenmodulation]]  (ZSB-AM)  
*und [[Modulationsverfahren/Synchrondemodulation|Synchrondemodulator]] (SD).  
+
*und  [[Modulationsverfahren/Synchrondemodulation|Synchrondemodulator]] (SD).  
  
  
Das Quellensignal bestehe aus zwei harmonischen Schwingungen mit den Frequenzen $f_2 = 2 \ \rm kHz$ und $f_5 = 5 \ \rm kHz$:
+
Das Quellensignal bestehe aus zwei harmonischen Schwingungen mit den Frequenzen  $f_2 = 2 \ \rm kHz$  und  $f_5 = 5 \ \rm kHz$:
 
:$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2  t )+ {1 \, \rm V}
 
:$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2  t )+ {1 \, \rm V}
 
\cdot {\rm sin}(\omega_5  t ) .$$
 
\cdot {\rm sin}(\omega_5  t ) .$$
  
*Dieses Signal wird mit dem dimensionslosen Trägersignal $z(t) = \cos(\omega_{\rm T} \cdot T)$ der Frequenz $f_{\rm T} = 50 \ \rm kHz$ multipliziert. Bei ZSB–AM ist der gestrichelt eingezeichnete Block unerheblich, so dass für das Sendesignal gilt:
+
*Dieses Signal wird mit dem dimensionslosen Trägersignal  $z(t) = \cos(\omega_{\rm T} \cdot T)$  der Frequenz  $f_{\rm T} = 50 \ \rm kHz$ multipliziert. Bei ZSB–AM ist der gestrichelt eingezeichnete Block unerheblich, so dass für das Sendesignal gilt:
 
:$$s(t) = q(t) \cdot  {\rm cos}(\omega_{\rm T}  t ) .$$
 
:$$s(t) = q(t) \cdot  {\rm cos}(\omega_{\rm T}  t ) .$$
  
*Im Synchrondemodulator wird das Empfängersignal $r(t)$ – bei idealem Kanal identisch mit dem Sendesignal $s(t)$ – mit dem empfangsseitigem Trägersignal $z_{\rm E}(t)$ multipliziert, wobei gilt:
+
*Im Synchrondemodulator wird das Empfängersignal  $r(t)$  – bei idealem Kanal identisch mit dem Sendesignal  $s(t)$  – mit dem empfangsseitigem Trägersignal  $z_{\rm E}(t)$  multipliziert, wobei gilt:
 
:$$z_{\rm E}(t) = K \cdot  {\rm cos}(\omega_{\rm T}  t - \Delta \varphi ) .$$
 
:$$z_{\rm E}(t) = K \cdot  {\rm cos}(\omega_{\rm T}  t - \Delta \varphi ) .$$
  
*Dieses Signal sollte nicht nur frequenzsynchron mit $z(t)$ sein, sondern auch phasensynchron  – daher der Name „Synchrondemodulator”.  
+
*Dieses Signal sollte nicht nur frequenzsynchron mit  $z(t)$  sein, sondern auch phasensynchron  – daher der Name „Synchrondemodulator”.  
*Der obige Ansatz berücksichtigt einen Phasenversatz zwischen  $z(t)$ und $z_{\rm E}(t)$, der idealerweise $\Delta \varphi = 0$ sein sollte, sich bei realen Systemen aber oft nicht vermeiden lässt.
+
*Der obige Ansatz berücksichtigt einen Phasenversatz zwischen  $z(t)$  und  $z_{\rm E}(t)$, der idealerweise  $\Delta \varphi = 0$  sein sollte, sich bei realen Systemen aber oft nicht vermeiden lässt.
  
*Das Ausgangssignal $b(t)$ des zweiten Multiplizierers beinhaltet neben dem gewünschten NF-Anteil auch Anteile um die doppelte Trägerfrequenz.  
+
*Das Ausgangssignal  $b(t)$  des zweiten Multiplizierers beinhaltet neben dem gewünschten NF-Anteil auch Anteile um die doppelte Trägerfrequenz.  
*Durch einen idealen Tiefpass – zum Beispiel mit der Grenzfrequenz $f_{\rm T}$ – lässt sich das Sinkensignal $v(t)$ gewinnen, das im Idealfall gleich dem Quellensignal $q(t)$ sein sollte.
+
*Durch einen idealen Tiefpass – zum Beispiel mit der Grenzfrequenz  $f_{\rm T}$  – lässt sich das Sinkensignal  $v(t)$  gewinnen, das im Idealfall gleich dem Quellensignal  $q(t)$  sein sollte.
  
  
Die Multiplikation beim Sender mit dem Trägersignal $z(t)$ führt im Allgemeinen zu zwei Seitenbändern. Bei der [[Modulationsverfahren/Einseitenbandmodulation|Einseitenbandmodulation]] (ESB–AM) wird nur eines der beiden Bänder übertragen, zum Beispiel das untere Seitenband (USB). Damit erhält man bei idealem Kanal:
+
Die Multiplikation beim Sender mit dem Trägersignal  $z(t)$  führt im Allgemeinen zu zwei Seitenbändern. Bei der  [[Modulationsverfahren/Einseitenbandmodulation|Einseitenbandmodulation]]  (ESB–AM) wird nur eines der beiden Bänder übertragen, zum Beispiel das untere Seitenband (USB). Damit erhält man bei idealem Kanal:
 
:$$r(t) = s(t)=  {1 \, \rm V} \cdot {\rm cos}\big [(\omega_{\rm T} -
 
:$$r(t) = s(t)=  {1 \, \rm V} \cdot {\rm cos}\big [(\omega_{\rm T} -
 
\omega_2  )\cdot t \big ] - {0.5 \, \rm V} \cdot {\rm sin}\big [(\omega_{\rm T} -
 
\omega_2  )\cdot t \big ] - {0.5 \, \rm V} \cdot {\rm sin}\big [(\omega_{\rm T} -
 
\omega_5  )\cdot t \big ] .$$
 
\omega_5  )\cdot t \big ] .$$
  
*Hier führt die Synchrondemodulation unter Berücksichtigung eines Phasenversatzes $\Delta \varphi$, der Konstante $K = 4$  sowie des nachgeschalteten Tiefpasses zu folgendem verfälschten Sinkensignal:
+
*Hier führt die Synchrondemodulation unter Berücksichtigung eines Phasenversatzes  $\Delta \varphi$, der Konstante  $K = 4$  sowie des nachgeschalteten Tiefpasses zu folgendem verfälschten Sinkensignal:
 
:$$v(t)=  {1 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm cos}(
 
:$$v(t)=  {1 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm cos}(
 
\omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot
 
\omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot
Zeile 39: Zeile 39:
 
\omega_5 t - \Delta \varphi)$$
 
\omega_5 t - \Delta \varphi)$$
  
:Im Idealfall phasensynchroner Demodulation $(\Delta \varphi = 0)$ gilt wieder $v(t) = q(t).$
+
*Im Idealfall phasensynchroner Demodulation  $(\Delta \varphi = 0)$  gilt wieder  $v(t) = q(t).$
 +
 
 +
 
 +
 
  
  
Zeile 48: Zeile 51:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]].
 
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]].
*Die Thematik „Amplitudenmodulation/Synchrondemodulator” wird im Buch  [[Modulationsverfahren]] noch ausführlich diskutiert.
+
*Die Thematik „Amplitudenmodulation/Synchrondemodulator” wird im Buch  [[Modulationsverfahren]]  noch ausführlich diskutiert.
 
   
 
   
 
*Gegeben sind die folgenden trigonometrischen Zusammenhänge:
 
*Gegeben sind die folgenden trigonometrischen Zusammenhänge:
Zeile 63: Zeile 66:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet das Sinkensignal &nbsp;$v(t)$&nbsp; bei ZSB-AM und phasensynchroner Synchrondemodulation  &nbsp; &rArr; &nbsp; $\Delta \varphi = 0$? <br>Wie ist $K$ zu wählen, damit  &nbsp;$v(t) = q(t)$&nbsp; gilt?
+
{Wie lautet das Sinkensignal &nbsp;$v(t)$&nbsp; bei ZSB-AM und phasensynchroner Synchrondemodulation  &nbsp; &rArr; &nbsp; $\Delta \varphi = 0$? <br>Wie ist&nbsp; $K$&nbsp; zu wählen, damit  &nbsp;$v(t) = q(t)$&nbsp; gilt?
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 2 3% }
 
$K \ = \ $ { 2 3% }
Zeile 77: Zeile 80:
  
  
{Welche Aussagen gelten bei Synchrondemodulation des ESB&ndash;Signals, wenn ein Phasenversatz um &nbsp;$\Delta \varphi$ berücksichtigt wird?
+
{Welche Aussagen gelten bei Synchrondemodulation des ESB&ndash;Signals, wenn ein Phasenversatz um &nbsp;$\Delta \varphi$&nbsp; berücksichtigt wird?
 
|type="[]"}
 
|type="[]"}
 
- Unabhängig von &nbsp;$\Delta \varphi$&nbsp; gilt &nbsp;$v(t) = q(t)$.
 
- Unabhängig von &nbsp;$\Delta \varphi$&nbsp; gilt &nbsp;$v(t) = q(t)$.

Version vom 29. Oktober 2019, 15:56 Uhr

AM–Modulator (oben) dowie Synchrondemodulator (unten)

Das dargestellte Blockschaltbild zeigt ein Übertragungssystem


Das Quellensignal bestehe aus zwei harmonischen Schwingungen mit den Frequenzen  $f_2 = 2 \ \rm kHz$  und  $f_5 = 5 \ \rm kHz$:

$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2 t )+ {1 \, \rm V} \cdot {\rm sin}(\omega_5 t ) .$$
  • Dieses Signal wird mit dem dimensionslosen Trägersignal  $z(t) = \cos(\omega_{\rm T} \cdot T)$  der Frequenz  $f_{\rm T} = 50 \ \rm kHz$ multipliziert. Bei ZSB–AM ist der gestrichelt eingezeichnete Block unerheblich, so dass für das Sendesignal gilt:
$$s(t) = q(t) \cdot {\rm cos}(\omega_{\rm T} t ) .$$
  • Im Synchrondemodulator wird das Empfängersignal  $r(t)$  – bei idealem Kanal identisch mit dem Sendesignal  $s(t)$  – mit dem empfangsseitigem Trägersignal  $z_{\rm E}(t)$  multipliziert, wobei gilt:
$$z_{\rm E}(t) = K \cdot {\rm cos}(\omega_{\rm T} t - \Delta \varphi ) .$$
  • Dieses Signal sollte nicht nur frequenzsynchron mit  $z(t)$  sein, sondern auch phasensynchron – daher der Name „Synchrondemodulator”.
  • Der obige Ansatz berücksichtigt einen Phasenversatz zwischen  $z(t)$  und  $z_{\rm E}(t)$, der idealerweise  $\Delta \varphi = 0$  sein sollte, sich bei realen Systemen aber oft nicht vermeiden lässt.
  • Das Ausgangssignal  $b(t)$  des zweiten Multiplizierers beinhaltet neben dem gewünschten NF-Anteil auch Anteile um die doppelte Trägerfrequenz.
  • Durch einen idealen Tiefpass – zum Beispiel mit der Grenzfrequenz  $f_{\rm T}$  – lässt sich das Sinkensignal  $v(t)$  gewinnen, das im Idealfall gleich dem Quellensignal  $q(t)$  sein sollte.


Die Multiplikation beim Sender mit dem Trägersignal  $z(t)$  führt im Allgemeinen zu zwei Seitenbändern. Bei der  Einseitenbandmodulation  (ESB–AM) wird nur eines der beiden Bänder übertragen, zum Beispiel das untere Seitenband (USB). Damit erhält man bei idealem Kanal:

$$r(t) = s(t)= {1 \, \rm V} \cdot {\rm cos}\big [(\omega_{\rm T} - \omega_2 )\cdot t \big ] - {0.5 \, \rm V} \cdot {\rm sin}\big [(\omega_{\rm T} - \omega_5 )\cdot t \big ] .$$
  • Hier führt die Synchrondemodulation unter Berücksichtigung eines Phasenversatzes  $\Delta \varphi$, der Konstante  $K = 4$  sowie des nachgeschalteten Tiefpasses zu folgendem verfälschten Sinkensignal:
$$v(t)= {1 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
$$\Rightarrow \hspace{0.5cm}v(t)= {2 \, \rm V} \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {1 \, \rm V} \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
  • Im Idealfall phasensynchroner Demodulation  $(\Delta \varphi = 0)$  gilt wieder  $v(t) = q(t).$





Hinweise:

  • Gegeben sind die folgenden trigonometrischen Zusammenhänge:
$$\cos^2(\alpha) = {1}/{2} \cdot \big [ 1 + \cos(2\alpha) \big ] \hspace{0.05cm}, $$
$$\cos(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$


Fragebogen

1

Wie lautet das Sinkensignal  $v(t)$  bei ZSB-AM und phasensynchroner Synchrondemodulation   ⇒   $\Delta \varphi = 0$?
Wie ist  $K$  zu wählen, damit  $v(t) = q(t)$  gilt?

$K \ = \ $

2

Es gelte  $K = 2$. Geben Sie das Sinkensignal  $v(t)$  unter Berücksichtigung eines Phasenversatzes  $\Delta \varphi$  an.
Welche der folgenden Aussagen treffen zu?

Unabhängig von  $\Delta \varphi$  gilt  $v(t) = q(t)$.
$\Delta \varphi \ne 0$  führt zu einer frequenzunabhängigen Dämpfung.
Ein Phasenversatz  $\Delta \varphi \ne 0$  führt zu Dämpfungsverzerrungen.
Ein Phasenversatz  $\Delta \varphi \ne 0$  führt zu Phasenverzerrungen.
Mit  $\Delta \varphi = \hspace{-0.05cm}-\hspace{0.05cm}60^\circ$  gilt  $v(t) = q(t)/2$.

3

Welche Aussagen gelten bei Synchrondemodulation des ESB–Signals, wenn ein Phasenversatz um  $\Delta \varphi$  berücksichtigt wird?

Unabhängig von  $\Delta \varphi$  gilt  $v(t) = q(t)$.
$\Delta \varphi \ne 0$  führt zu einer frequenzunabhängigen Dämpfung.
Ein Phasenversatz  $\Delta \varphi \ne 0$  führt zu Dämpfungsverzerrungen.
Ein Phasenversatz  $\Delta \varphi \ne 0$  führt zu Phasenverzerrungen.
Mit  $\Delta \varphi = \hspace{-0.05cm}-\hspace{0.05cm}60^\circ$  gilt  $v(t) = q(t)/2$.


Musterlösung

(1)  Für das Bandpass–Signal nach dem zweiten Multiplizierer gilt:

$$b(t) = r(t) \cdot z_{\rm E}(t)= q(t) \cdot z(t) \cdot z_{\rm E}(t)= K \cdot q(t)\cdot \cos^2(\omega_{\rm T} t).$$

Mit der trigonometrischen Beziehung $\cos^2(\omega_{\rm T} t) = {1}/{2} \cdot\big[ 1 + \cos(2\omega_{\rm T} t)\big]$ erhält man

$$b(t) = {K}/{2} \cdot q(t) + {K}/{2} \cdot q(t)\cdot \cos(2\omega_{\rm T} t).$$
  • Der zweite Anteil liegt um die doppelte Trägerfrequenz   ⇒   $2 f_{\rm T}$ und wird durch den Tiefpass (zum Beispiel mit der Grenzfrequenz $ f_{\rm G} = f_{\rm T}$) entfernt.
  • Damit erhält man:   $v(t) = {K}/{2} \cdot q(t) .$
  • Mit $\underline {K = 2}$ ergibt sich eine ideale Demodulation   ⇒   $v(t) = q(t) .$


(2)  Unter Berücksichtigung der Beziehung

$$\cos(\omega_{\rm T} t) \cdot \cos(\omega_{\rm T} t - \Delta \varphi) = {1}/{2} \cdot \big[ \cos(\Delta \varphi)+ \cos(2\omega_{\rm T} t - \Delta \varphi) \big]$$

sowie des nachgeschalteten Tiefpasses, der wieder den Anteil um die doppelte Trägerfrequenz entfernt, erhält man hier mit $ {K = 2}$:

$$v(t) = q(t) \cdot \cos(\Delta \varphi).$$

Richtig sind die Lösungsvorschläge 2 und 5:

  • Ein Phasenversatz  $\Delta \varphi$  führt hier nur zu einer frequenzunabhängigen Dämpfung und nicht zu Dämpfungs– oder Phasenverzerrungen.
  • Ein Phasenversatz um  $\varphi =\pm 60^\circ$  hat jeweils eine Halbierung des Signals zur Folge.


(3)  Richtig ist hier der Lösungsvorschlag 4.

  • Bei beiden Summanden tritt genau der gleiche Phasenversatz $\Delta \varphi$ auf, und es kommt hier zu Phasenverzerrungen:
$$v(t)= {2 \, \rm V} \cdot{\rm cos}\big[ \omega_2 \cdot (t - \tau_2) \big]+ {1 \, \rm V} \cdot{\rm sin}\big[ \omega_5 t \cdot (t - \tau_5)\big],$$
$${\rm wobei}\hspace{0.5cm}\tau_2 = \frac{\Delta \varphi}{\omega_2} \hspace{0.5cm}\ne \hspace{0.5cm} \tau_5 = \frac{\Delta \varphi}{\omega_5}.$$
  • Ein Phasenversatz von  $\varphi =60^\circ$ entsprechend $\pi/3$  führt hier zu den Verzögerungszeiten:
$$\tau_2 = \frac{\pi/3}{2 \pi \cdot 2\,\,{\rm kHz }} \approx 83.3\,{\rm \mu s }, \hspace{0.5cm} \tau_5 = \frac{\pi/3}{2 \pi \cdot 5\,\,{\rm kHz }} \approx 33.3\,{\rm \mu s }.$$
  • Das niederfrequentere Signal wird also stärker verzögert.