Aufgaben:Aufgabe 1.6Z: Ergodische Wahrscheinlichkeiten: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}}
 
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}}
  
[[Datei:P_ID452__Sto_Z_1_6.png|right|frame|Binäre Markovkette]]
+
[[Datei:P_ID452__Sto_Z_1_6.png|right|frame|Binäre Markovkette mit  $A$  und  $B$]]
Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen $A$ und $B$ und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:
+
Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen  $A$  und  $B$  und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:
  
Für die Teilaufgaben '''(1)''' bis '''(4)''' wird vorausgesetzt:
+
Für die Teilaufgaben  '''(1)'''  bis  '''(4)'''  wird vorausgesetzt:
  
*Nach dem Ereignis $A$ folgen $A$ und $B$ mit gleicher Wahrscheinlichkeit.
+
*Nach dem Ereignis  $A$  folgen  $A$  und  $B$  mit gleicher Wahrscheinlichkeit.
 +
 
 +
*Nach  $B$  ist das Ereignis  $A$  doppelt so wahrscheinlich wie  $B$.
 +
 
 +
 
 +
Ab Teilaufgabe  '''(5)'''  sind  $p$  und  $q$  als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten  ${\rm Pr}(A) = 2/3$  und  ${\rm Pr}(B) = 1/3$  fest vorgegeben sind.
  
*Nach $B$ ist das Ereignis $A$ doppelt so wahrscheinlich wie $B$.
 
  
  
Ab Teilaufgabe '''(5)''' sind $p$ und $q$ als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten ${\rm Pr}(A) = 2/3$ und ${\rm Pr}(B) = 1/3$ fest vorgegeben sind.
 
  
  
Zeile 19: Zeile 22:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Markovketten|Markovketten]].
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Markovketten|Markovketten]].
 
   
 
   
*Sie können Ihre Ergebnisse mit dem interaktiven Applet [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette 1. Ordnung]] überprüfen.
+
*Sie können Ihre Ergebnisse mit dem interaktiven Applet  [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette 1. Ordnung]]  überprüfen.
  
  
Zeile 28: Zeile 31:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Übergangswahrscheinlichkeiten $p$ und $q$?
+
{Wie groß sind die Übergangswahrscheinlichkeiten&nbsp; $p$&nbsp; und&nbsp; $q$?
 
|type="{}"}
 
|type="{}"}
 
$p \ = \ $  { 0.5 3% }
 
$p \ = \ $  { 0.5 3% }
Zeile 38: Zeile 41:
 
${\rm Pr}(B) \ = \ $ { 0.429 3% }
 
${\rm Pr}(B) \ = \ $ { 0.429 3% }
  
{Wie groß ist die bedingte Wahrscheinlichkeit, dass das Ereignis $B$ auftritt, wenn zwei Takte vorher das Ereignis $A$ aufgetreten ist?
+
{Wie groß ist die bedingte Wahrscheinlichkeit, dass das Ereignis&nbsp; $B$&nbsp; auftritt, wenn zwei Takte vorher das Ereignis&nbsp; $A$&nbsp; aufgetreten ist?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $ { 0.417 3% }
 
${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $ { 0.417 3% }
  
{Wie groß ist die Rückschlusswahrscheinlichkeit, dass zwei Takte vorher das Ereignis $A$ aufgetreten ist, wenn aktuell $B$ auftritt?
+
{Wie groß ist die Rückschlusswahrscheinlichkeit, dass zwei Takte vorher das Ereignis&nbsp; $A$&nbsp; aufgetreten ist, wenn aktuell&nbsp; $B$&nbsp; auftritt?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $ { 0.556 3% }
 
${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $ { 0.556 3% }
  
{Es gelte nun $p = 1/2$ und ${\rm Pr}(A) = 2/3$. Welcher Wert ergibt sich für $q$?
+
{Es gelte nun&nbsp; $p = 1/2$&nbsp; und&nbsp; ${\rm Pr}(A) = 2/3$.&nbsp; Welcher Wert ergibt sich für&nbsp; $q$?
 
|type="{}"}
 
|type="{}"}
 
$q\ = \ $ { 0. }
 
$q\ = \ $ { 0. }
  
{Wie muss man die Parameter wählen, damit die Folgenelemente der Markovkette statistisch unabhängig sind und zusätzlich ${\rm Pr}(A) = 2/3$ gilt?
+
{Wie muss man die Parameter wählen, damit die Folgenelemente der Markovkette statistisch unabhängig sind und zusätzlich&nbsp; ${\rm Pr}(A) = 2/3$&nbsp; gilt?
 
|type="{}"}
 
|type="{}"}
 
$p \ = \ $ { 0.667 3% }
 
$p \ = \ $ { 0.667 3% }

Version vom 12. November 2019, 13:47 Uhr

Binäre Markovkette mit  $A$  und  $B$

Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen  $A$  und  $B$  und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:

Für die Teilaufgaben  (1)  bis  (4)  wird vorausgesetzt:

  • Nach dem Ereignis  $A$  folgen  $A$  und  $B$  mit gleicher Wahrscheinlichkeit.
  • Nach  $B$  ist das Ereignis  $A$  doppelt so wahrscheinlich wie  $B$.


Ab Teilaufgabe  (5)  sind  $p$  und  $q$  als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten  ${\rm Pr}(A) = 2/3$  und  ${\rm Pr}(B) = 1/3$  fest vorgegeben sind.





Hinweise:


Fragebogen

1

Wie groß sind die Übergangswahrscheinlichkeiten  $p$  und  $q$?

$p \ = \ $

$q \ = \ $

2

Berechnen Sie die ergodischen Wahrscheinlichkeiten.

${\rm Pr}(A) \ = \ $

${\rm Pr}(B) \ = \ $

3

Wie groß ist die bedingte Wahrscheinlichkeit, dass das Ereignis  $B$  auftritt, wenn zwei Takte vorher das Ereignis  $A$  aufgetreten ist?

${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $

4

Wie groß ist die Rückschlusswahrscheinlichkeit, dass zwei Takte vorher das Ereignis  $A$  aufgetreten ist, wenn aktuell  $B$  auftritt?

${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $

5

Es gelte nun  $p = 1/2$  und  ${\rm Pr}(A) = 2/3$.  Welcher Wert ergibt sich für  $q$?

$q\ = \ $

6

Wie muss man die Parameter wählen, damit die Folgenelemente der Markovkette statistisch unabhängig sind und zusätzlich  ${\rm Pr}(A) = 2/3$  gilt?

$p \ = \ $

$q \ = \ $


Musterlösung

(1)  Gemäß der Angabe gilt   $p = 1 - p$   ⇒   $\underline{p =0.500}$ und $q = (1 - q)/2$,   ⇒   $\underline{q =0.333}$.


(2)  Für die Ereigniswahrscheinlichkeit von $A$ gilt:

$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7} \hspace{0.15cm}\underline {\approx0.571}.$$

Damit ergibt sich ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$.


(3)  Über den Zeitpunkt $\nu-1$ ist keine Aussage getroffen. Zu diesem Zeitpunkt kann $A$ oder $B$ aufgetreten sein. Deshalb gilt:

$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) + q \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) = \frac{5}{12} \hspace{0.15cm}\underline {\approx 0.417}.$$


(4)  Nach dem Satz von Bayes gilt:

$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } = \frac{5/12 \cdot 4/7 }{3/7 } = {5}/{9} \hspace{0.15cm}\underline {\approx 0.556}.$$

Begründung:

  • Die Wahrscheinlichkeit ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$ wurde bereits im Unterpunkt (3) berechnet.
  • Aufgrund der Stationarität gilt ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$ und ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$.
  • Damit erhält man für die gesuchte Rückschlusswahrscheinlichkeit nach obiger Gleichung den Wert 5/9.


(5)  Entsprechend der Teilaufgabe (2) gilt mit ${p =1/2}$ für die Wahrscheinlichkeit von $A$ allgemein:

$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$

Aus $ {\rm Pr}(A) = 2/3$ folgt somit $\underline{q =0}$.


(6)  Im Fall der statistischen Unabhängigkeit muss beispielsweise gelten:

$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$

Daraus folgt  $p = {\rm Pr}(A) \hspace{0.15cm}\underline {= 2/3}$  und dementsprechend  $q = 1-p \hspace{0.15cm}\underline {= 1/3}$.