Aufgaben:Aufgabe 2.1Z: Signalverläufe: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID59__Sto_Z_2_1.png|right|frame|Wertdiskret oder wertkontinuierlich?]]
 
[[Datei:P_ID59__Sto_Z_2_1.png|right|frame|Wertdiskret oder wertkontinuierlich?]]
Rechts sind fünf Signalverläufe dargestellt. Die ersten drei Signale $\rm (A)$, $\rm (B)$ und $\rm (C)$ sind periodisch und damit auch deterministisch, die beiden unteren Signale haben stochastischen Charakter. Der Momentanwert dieser Signale $x(t)$ wird jeweils als eine Zufallsgröße aufgefasst.
+
Rechts sind fünf Signalverläufe dargestellt.  Die ersten drei Signale  $\rm (A)$,  $\rm (B)$  und  $\rm (C)$  sind periodisch und damit auch deterministisch, die beiden unteren Signale haben stochastischen Charakter. Der Momentanwert dieser Signale  $x(t)$  wird jeweils als eine Zufallsgröße aufgefasst.
  
 
Im Einzelnen sind dargestellt:
 
Im Einzelnen sind dargestellt:
Zeile 10: Zeile 10:
 
$\rm (A)$:   ein dreieckförmiges periodisches Signal,
 
$\rm (A)$:   ein dreieckförmiges periodisches Signal,
  
$\rm (B)$:   das Signal $\rm (A)$ nach Einweggleichrichtung,
+
$\rm (B)$:   das Signal  $\rm (A)$  nach Einweggleichrichtung,
  
 
$\rm (C)$:   ein rechteckförmiges periodisches Signal,
 
$\rm (C)$:   ein rechteckförmiges periodisches Signal,
Zeile 16: Zeile 16:
 
$\rm (D)$:   ein rechteckförmiges Zufallssignal,
 
$\rm (D)$:   ein rechteckförmiges Zufallssignal,
  
$\rm (E)$:   das Zufallssignal $\rm (D)$ nach  AMI-Codierung;   hierbei bleibt die „Null” erhalten, während eine jede „Eins” alternierend mit „$+2\hspace{0.03cm}\rm V$” und „$-2\hspace{0.03cm} \rm V$” codiert wird.
+
$\rm (E)$: &nbsp;&nbsp;das Zufallssignal&nbsp; $\rm (D)$&nbsp; nach &nbsp;AMI-Codierung; &nbsp; <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; hierbei bleibt die &bdquo;Null&rdquo; erhalten, w&auml;hrend eine jede &bdquo;Eins&rdquo; alternierend mit &bdquo;$+2\hspace{0.03cm}\rm V$&rdquo; und &bdquo;$-2\hspace{0.03cm} \rm V$&rdquo; codiert wird.
  
  
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Vom_Zufallsexperiment_zur_Zufallsgröße|Vom Zufallsexperiment zur Zufallsgröße]].
+
 
 +
 
 +
''Hinweis:''  
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Vom_Zufallsexperiment_zur_Zufallsgröße|Vom Zufallsexperiment zur Zufallsgröße]].
 
   
 
   
  
Zeile 31: Zeile 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Bei welchen Signalen beschreibt der Momentanwert eine diskrete Zufallsgr&ouml;&szlig;e? <br>&Uuml;berlegen Sie sich auch die jeweilige Stufenzahl $M$.
+
{Bei welchen Signalen beschreibt der Momentanwert eine diskrete Zufallsgr&ouml;&szlig;e? <br>&Uuml;berlegen Sie sich auch die jeweilige Stufenzahl&nbsp; $M$.
 
|type="[]"}
 
|type="[]"}
 
- Signal $\rm (A)$,
 
- Signal $\rm (A)$,
Zeile 58: Zeile 61:
  
  
{F&uuml;r das Signal $\rm (D)$ wird die relative H&auml;ufigkeit $h_0$ empirisch &uuml;ber $100\hspace{0.03cm}000$ Binärsymbole ermittelt. <br>Benennen Sie eine untere Schranke f&uuml;r die Wahrscheinlichkeit, dass der ermittelte Wert zwischen $0.49$ und $0.51$ liegt?
+
{F&uuml;r das Signal&nbsp; $\rm (D)$&nbsp; wird die relative H&auml;ufigkeit&nbsp; $h_0$&nbsp; empirisch &uuml;ber $100\hspace{0.03cm}000$ Binärsymbole ermittelt. <br>Benennen Sie eine untere Schranke f&uuml;r die Wahrscheinlichkeit, dass der ermittelte Wert zwischen&nbsp; $0.49$&nbsp; und&nbsp; $0.51$&nbsp; liegt?
 
|type="{}"}
 
|type="{}"}
 
${\rm Min\big[\ Pr(0.49}≤h_0≤0.51)\ \big] \ = \ $ { 0.975 3% }
 
${\rm Min\big[\ Pr(0.49}≤h_0≤0.51)\ \big] \ = \ $ { 0.975 3% }
  
  
{Wieviele Symbole $(N_\min)$ m&uuml;sste man f&uuml;r diese Untersuchung heranziehen, damit sichergestellt wird, dass die Wahrscheinlichkeit f&uuml;r das Ereignis &bdquo;Die so ermittelte H&auml;ufigkeit liegt zwischen $0.499$ und $0.501$&rdquo; größer als $99\%$ ist?
+
{Wieviele Symbole&nbsp; $(N_\min)$&nbsp; m&uuml;sste man f&uuml;r diese Untersuchung heranziehen, damit sichergestellt wird, <br>dass die Wahrscheinlichkeit f&uuml;r das Ereignis &bdquo;Die so ermittelte H&auml;ufigkeit liegt zwischen&nbsp; $0.499$&nbsp; und&nbsp; $0.501$&rdquo; größer als&nbsp; $99\%$&nbsp; ist?
 
|type="{}"}
 
|type="{}"}
 
$N_\min \ =  \ $  { 2.5 3% } $\ \cdot 10^9$
 
$N_\min \ =  \ $  { 2.5 3% } $\ \cdot 10^9$

Version vom 12. November 2019, 17:40 Uhr

Wertdiskret oder wertkontinuierlich?

Rechts sind fünf Signalverläufe dargestellt.  Die ersten drei Signale  $\rm (A)$,  $\rm (B)$  und  $\rm (C)$  sind periodisch und damit auch deterministisch, die beiden unteren Signale haben stochastischen Charakter. Der Momentanwert dieser Signale  $x(t)$  wird jeweils als eine Zufallsgröße aufgefasst.

Im Einzelnen sind dargestellt:

$\rm (A)$:   ein dreieckförmiges periodisches Signal,

$\rm (B)$:   das Signal  $\rm (A)$  nach Einweggleichrichtung,

$\rm (C)$:   ein rechteckförmiges periodisches Signal,

$\rm (D)$:   ein rechteckförmiges Zufallssignal,

$\rm (E)$:   das Zufallssignal  $\rm (D)$  nach  AMI-Codierung;  
            hierbei bleibt die „Null” erhalten, während eine jede „Eins” alternierend mit „$+2\hspace{0.03cm}\rm V$” und „$-2\hspace{0.03cm} \rm V$” codiert wird.




Hinweis:



Fragebogen

1

Bei welchen Signalen beschreibt der Momentanwert eine diskrete Zufallsgröße?
Überlegen Sie sich auch die jeweilige Stufenzahl  $M$.

Signal $\rm (A)$,
Signal $\rm (B)$,
Signal $\rm (C)$,
Signal $\rm (D)$,
Signal $\rm (E)$.

2

Bei welchen Signalen ist der Momentanwert eine (ausschließlich) kontinuierliche Zufallsgröße?

Signal $\rm (A)$,
Signal $\rm (B)$,
Signal $\rm (C)$,
Signal $\rm (D)$,
Signal $\rm (E)$.

3

Welche Zufallsgrößen besitzen einen diskreten und einen kontinuierlichen Anteil?

Signal $\rm (A)$,
Signal $\rm (B)$,
Signal $\rm (C)$,
Signal $\rm (D)$,
Signal $\rm (E)$.

4

Für das Signal  $\rm (D)$  wird die relative Häufigkeit  $h_0$  empirisch über $100\hspace{0.03cm}000$ Binärsymbole ermittelt.
Benennen Sie eine untere Schranke für die Wahrscheinlichkeit, dass der ermittelte Wert zwischen  $0.49$  und  $0.51$  liegt?

${\rm Min\big[\ Pr(0.49}≤h_0≤0.51)\ \big] \ = \ $

5

Wieviele Symbole  $(N_\min)$  müsste man für diese Untersuchung heranziehen, damit sichergestellt wird,
dass die Wahrscheinlichkeit für das Ereignis „Die so ermittelte Häufigkeit liegt zwischen  $0.499$  und  $0.501$” größer als  $99\%$  ist?

$N_\min \ = \ $

$\ \cdot 10^9$


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 3, 4 und 5:

  • Die Zufallsgrößen $\rm (C)$ und $\rm (D)$ sind binär $(M= 2)$,
  • während die Zufallsgröße $\rm (E)$ dreiwertig ist.


(2)  Richtig ist allein der Lösungsvorschlag 1:

  • Die Zufallsgröße $\rm (A)$ ist kontinuierlich und kann alle Werte zwischen $\pm 2 \hspace{0.03cm} \rm V$ mit gleicher Wahrscheinlichkeit annehmen.
  • Alle anderen Zufallsgrößen sind diskret.


(3)  Richtig ist allein der Lösungsvorschlag 2:

  • Nur die Zufallsgröße $\rm (B)$ hat einen diskreten Anteil bei $0\hspace{0.03cm}\rm V$ und
  • außerdem noch eine kontinuierliche Komponente (zwischen $0\hspace{0.03cm} \rm V$ und $+2\hspace{0.03cm}\rm V$).


(4)  Nach dem Bernoullischen Gesetz der großen Zahlen gilt:

$$\rm Pr\left(|\it h_{\rm 0} - \it p_{\rm 0}|\ge\it\varepsilon\right)\le\frac{\rm 1}{\rm 4\cdot \it N\cdot\it\varepsilon^{\rm 2}} = {\it p}_{\rm \hspace{0.01cm}Bernouilli}.$$

Damit ist die Wahrscheinlichkeit, dass die relative Häufigkeit $h_0$ von der Wahrscheinlichkeit $p_0 = 0.5$ betragsmäßig um mehr als $0.01$ abweicht, mit $\varepsilon = 0.01$ berechenbar:

$${\it p}_{\rm \hspace{0.01cm}Bernoulli} = \rm\frac{1}{4\cdot 100000\cdot 0.01^2}=\rm 2.5\% \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\rm Min}\big[({\rm Pr}(0.49 \le h_0 \le 0.51)\big] \hspace{0.15cm}\underline{= 0.975}.$$


(5)  Mit $p_{\rm Bernoulli} = 1 - 0.99 = 0.01$ und $\varepsilon = 0.001$ gilt wiederum nach dem Gesetz der großen Zahlen:

$${\it p}_{\rm \hspace{0.01cm}Bernoulli}\le\frac{\rm 1}{\rm 4\cdot \it N\cdot\it \varepsilon^{\rm 2}}.$$

Aufgelöst nach $N$ erhält man:

$$N\ge\frac{\rm 1}{\rm 4\cdot\it p_{\rm \hspace{0.01cm}Bernoulli}\cdot\it\varepsilon^{\rm 2}}=\rm \frac{1}{4\cdot 0.01\cdot 0.001^{2}}=\rm 0.25\cdot 10^8 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\it N}_{\rm min} \hspace{0.15cm}\underline{= 2.5\cdot 10^9}.$$