Aufgaben:Aufgabe 3.2: VTF zur Aufgabe 3.1: Unterschied zwischen den Versionen
Zeile 72: | Zeile 72: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Da $x$ eine kontinuierliche Zufallsgröße und auf den Bereich $|\hspace{0.05cm}x\hspace{0.05cm}|$ | + | '''(1)''' Da $x$ eine kontinuierliche Zufallsgröße und auf den Bereich $|\hspace{0.05cm}x\hspace{0.05cm}< 2|$ begrenzt ist, sind <u>alle drei vorgegebenen Aussagen</u> richtig. |
+ | |||
'''(2)''' Richtig sind hier nur die <u>Aussagen 2 und 3</u>: | '''(2)''' Richtig sind hier nur die <u>Aussagen 2 und 3</u>: | ||
*Bei einer diskreten Zufallsgröße steigt die Verteilungsfunktion nur schwach monoton an. | *Bei einer diskreten Zufallsgröße steigt die Verteilungsfunktion nur schwach monoton an. | ||
− | * | + | * Das heißt: Es gibt außer Sprüngen ausschließlich horizontale Abschnitte der VTF. |
− | *Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt, ist demzufolge $F_y(-2) = 0.1$, also ungleich | + | *Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt, ist demzufolge $F_y(-2) = 0.1$, also ungleich Null. |
+ | |||
− | '''(3)''' Die VTF $F_x(r)$ berechnet sich als das Integral von $-\infty$ bis $r$ über die WDF $f_x(x)$. | + | '''(3)''' Die VTF $F_x(r)$ berechnet sich als das Integral von $-\infty$ bis $r$ über die WDF $f_x(x)$. |
− | Aufgrund der Symmetrie kann hierfür im Bereich $0 \le r \le +2$ geschrieben werden: | + | Aufgrund der Symmetrie kann hierfür im Bereich $0 \le r \le +2$ geschrieben werden: |
:$$F_{x} (r) =\frac{1}{2} + \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} + \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$ | :$$F_{x} (r) =\frac{1}{2} + \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} + \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$ | ||
− | In gleicher Weise wie bei der Teilaufgabe '''(7)''' der Aufgabe 3.1 erhält man somit: | + | In gleicher Weise wie bei der Teilaufgabe '''(7)''' der Aufgabe 3.1 erhält man somit: |
:$$F_{x} (r) =\frac{1}{2} + \frac{ r}{ 4} + \frac{1}{2 \pi} \cdot \sin({\pi}/{2}\cdot r),$$ | :$$F_{x} (r) =\frac{1}{2} + \frac{ r}{ 4} + \frac{1}{2 \pi} \cdot \sin({\pi}/{2}\cdot r),$$ | ||
:$$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi} \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$ | :$$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi} \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$ | ||
Zeile 93: | Zeile 95: | ||
− | '''(4)''' Aufgrund der Punktsymmetrie um $r=0$ bzw. $F_{x} (0) = 1/2$ und wegen $\sin(-x) = -\sin(x)$ gilt diese Formel im gesamten Bereich, wie die folgende Kontrollrechnung zeigt: | + | '''(4)''' Aufgrund der Punktsymmetrie um $r=0$ bzw. $F_{x} (0) = 1/2$ und wegen $\sin(-x) = -\sin(x)$ gilt diese Formel im gesamten Bereich, wie die folgende Kontrollrechnung zeigt: |
:$$F_{x} (r=-2) =\rm \frac{1}{2} - \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi} \cdot\rm sin(\pi)=0,$$ | :$$F_{x} (r=-2) =\rm \frac{1}{2} - \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi} \cdot\rm sin(\pi)=0,$$ | ||
:$$F_{x} (r=-1) =\rm \frac{1}{2} - \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$ | :$$F_{x} (r=-1) =\rm \frac{1}{2} - \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$ | ||
− | '''(5)''' Für die Wahrscheinlichkeit, dass $x$ zwischen $-1$ und $+1$ liegt, gilt: | + | '''(5)''' Für die Wahrscheinlichkeit, dass $x$ zwischen $-1$ und $+1$ liegt, gilt: |
:$${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}|< 1)= F_{x}(+1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$ | :$${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}|< 1)= F_{x}(+1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$ | ||
− | Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe '''(7)''' der Aufgabe 3.1 überein, das durch direkte Integration über die WDF ermittelt wurde. | + | *Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe '''(7)''' der Aufgabe 3.1 überein, das durch direkte Integration über die WDF ermittelt wurde. |
− | '''(6)''' Die VTF der diskreten Zufallsgröße $y$ an der Stelle $y =0$ ist die Summe der Wahrscheinlichkeiten von $-2$, $-1$ und $0$, also gilt | + | '''(6)''' Die VTF der diskreten Zufallsgröße $y$ an der Stelle $y =0$ ist die Summe der Wahrscheinlichkeiten von $-2$, $-1$ und $0$, also gilt |
:$$F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}.$$ | :$$F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}.$$ | ||
Version vom 14. November 2019, 17:37 Uhr
Es gelten die gleichen Voraussetzungen wie für die Aufgabe 3.1.
- Die WDF der wertkontinuierlichen Zufallsgröße ist in den Bereichen $|x| > 2$ identisch Null, und im Bereich $-2 \le x \le +2$ gilt:
- $$f_x(x)={1}/{2}\cdot \cos^2({\pi}/{4}\cdot x).$$
- Auch die diskrete Zufallsgröße $y$ ist auf den Bereich $\pm 2$ begrenzt. Hier gelten folgende Wahrscheinlichkeiten:
- $${\rm \Pr}(y=0)=0.4,$$
- $${\rm \Pr}(y=+1)={\rm \Pr}(y=-1)=0.2,$$
- $${\rm \Pr}(y=+2)={\rm \Pr}(y=-2)=0.1.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Verteilungsfunktion.
- Gegeben ist die folgende Gleichung:
- $$\int \cos^{\rm 2}( ax)\, {\rm d}x=\frac{x}{2}+\frac{1}{4 a}\cdot \sin(2 ax).$$
- Eine Zusammenfassung der hier behandelten Thematik bietet das Lernvideo Zusammenhang zwischen WDF und VTF.
Fragebogen
Musterlösung
(2) Richtig sind hier nur die Aussagen 2 und 3:
- Bei einer diskreten Zufallsgröße steigt die Verteilungsfunktion nur schwach monoton an.
- Das heißt: Es gibt außer Sprüngen ausschließlich horizontale Abschnitte der VTF.
- Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt, ist demzufolge $F_y(-2) = 0.1$, also ungleich Null.
(3) Die VTF $F_x(r)$ berechnet sich als das Integral von $-\infty$ bis $r$ über die WDF $f_x(x)$.
Aufgrund der Symmetrie kann hierfür im Bereich $0 \le r \le +2$ geschrieben werden:
- $$F_{x} (r) =\frac{1}{2} + \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} + \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$
In gleicher Weise wie bei der Teilaufgabe (7) der Aufgabe 3.1 erhält man somit:
- $$F_{x} (r) =\frac{1}{2} + \frac{ r}{ 4} + \frac{1}{2 \pi} \cdot \sin({\pi}/{2}\cdot r),$$
- $$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi} \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$
- $$F_{x} (r=1) =\rm \frac{1}{2} + \frac{\rm 1}{\rm 4} + \rm \frac{1}{2 \pi}\cdot \rm sin({\pi}/{2})\hspace{0.15cm}\underline{=0.909},$$
- $$F_{x} (r=2) =\rm \frac{1}{2} + \frac{\rm1}{\rm 2} + \rm \frac{1}{2 \pi} \cdot \rm sin(\pi)\hspace{0.15cm}{= 1.000}.$$
(4) Aufgrund der Punktsymmetrie um $r=0$ bzw. $F_{x} (0) = 1/2$ und wegen $\sin(-x) = -\sin(x)$ gilt diese Formel im gesamten Bereich, wie die folgende Kontrollrechnung zeigt:
- $$F_{x} (r=-2) =\rm \frac{1}{2} - \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi} \cdot\rm sin(\pi)=0,$$
- $$F_{x} (r=-1) =\rm \frac{1}{2} - \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$
(5) Für die Wahrscheinlichkeit, dass $x$ zwischen $-1$ und $+1$ liegt, gilt:
- $${\rm Pr}(|\hspace{0.05cm}x\hspace{0.05cm}|< 1)= F_{x}(+1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$
- Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe (7) der Aufgabe 3.1 überein, das durch direkte Integration über die WDF ermittelt wurde.
(6) Die VTF der diskreten Zufallsgröße $y$ an der Stelle $y =0$ ist die Summe der Wahrscheinlichkeiten von $-2$, $-1$ und $0$, also gilt
- $$F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}.$$