Aufgaben:Aufgabe 3.7: Bitfehlerquote (BER): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 6: Zeile 6:
 
Wir betrachten ein binäres Übertragungssystem mit
 
Wir betrachten ein binäres Übertragungssystem mit
  
*der Quellensymbolfolge $\langle q_\nu \rangle $ und
+
*der Quellensymbolfolge  $\langle q_\nu \rangle $  und
*der Sinkensymbolfolge $\langle v_\nu \rangle $.
+
*der Sinkensymbolfolge  $\langle v_\nu \rangle $.
  
  
Stimmen Sinkensymbol $v_\nu$ und Quellensymbol $q_\nu$ nicht überein, so liegt ein Bitfehler vor   ⇒    $e_\nu = 1$. Ansonsten gilt $e_\nu = 0$.
+
Stimmen Sinkensymbol&nbsp; $v_\nu$&nbsp; und Quellensymbol&nbsp; $q_\nu$&nbsp; nicht &uuml;berein, so liegt ein Bitfehler vor &nbsp; &rArr; &nbsp;  $e_\nu = 1$. <br>Ansonsten gilt&nbsp; $e_\nu = 0$.
  
  
Wichtigstes Beurteilungskriterium eines solchen Digitalsystems ist die <br>'''Bitfehlerwahrscheinlichkeit''' (englisch: &nbsp; <i>Bit Error Probability</i>).
+
$\rm (A)$&nbsp; Das wichtigste Beurteilungskriterium eines solchen Digitalsystems ist
*Mit dem Erwartungswert ${\rm E}\big[\text{ ...} \big]$ ist diese ist wie folgt definiert:
 
:$$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1).$$
 
  
*Der rechte Teil dieser Gleichung beschreibt eine Zeitmittelung und muss zum Beispiel bei zeitvarianten Kan&auml;len stets angewandt werden.  
+
:die&nbsp; '''Bitfehlerwahrscheinlichkeit'''&nbsp; (englisch: &nbsp; <i>Bit Error Probability</i>).
*Ist die Fehlerwahrscheinlichkeit f&uuml;r alle Symbole gleich (was hier vorausgesetzt wird), so kann man die obige Gleichung vereinfachen:
+
:*Mit dem Erwartungswert&nbsp; ${\rm E}\big[\text{ ...} \big]$&nbsp; ist diese ist wie folgt definiert:
:$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
+
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1).$$
  
 +
:*Der rechte Teil dieser Gleichung beschreibt eine Zeitmittelung;&nbsp;diese muss zum Beispiel bei zeitvarianten Kan&auml;len stets angewandt werden.
 +
:*Ist die Fehlerwahrscheinlichkeit f&uuml;r alle Symbole gleich (was hier vorausgesetzt wird), so kann man die obige Gleichung vereinfachen:
 +
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
  
Die Bitfehlerwahrscheinlichkeit ist eine A-priori-Kenngr&ouml;&szlig;e, erlaubt also eine Vorhersage f&uuml;r das zu erwartende Resultat.  
+
:Die Bitfehlerwahrscheinlichkeit ist eine ''A-priori-Kenngr&ouml;&szlig;e'', erlaubt also eine Vorhersage f&uuml;r das zu erwartende Resultat.
 +
 
 +
 
 +
$\rm (B)$&nbsp; Dagegen muss zur messtechnischen Ermittlung der &Uuml;bertragungsqualit&auml;t oder bei der Systemsimulation auf
 +
 
 +
:die vergleichbare ''A-posteriori-Kenngr&ouml;&szlig;e''&nbsp; '''Bitfehlerquote'''&nbsp; (englisch: &nbsp; <i>Bit Error Rate</i>)&nbsp; &uuml;bergegangen werden:
 +
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
 +
 
 +
:*$h_{\rm B}$&nbsp; ist eine&nbsp; [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung#Definition_der_Bitfehlerquote|relative H&auml;ufigkeit]].&nbsp; $n_{\rm B}$&nbsp; gibt die Anzahl der aufgetretenen Bitfehler an, wenn insgesamt&nbsp; $N$&nbsp; Symbole (Bit) &uuml;bertragen wurden.
 +
 
 +
:*Im Grenzfall&nbsp; $N \to \infty$&nbsp; stimmt die relative H&auml;ufigkeit&nbsp; $h_{\rm B}$&nbsp; mit der Wahrscheinlichkeit&nbsp; $p_{\rm B}$&nbsp; &uuml;berein.
 +
:*Hier soll nun die Frage gekl&auml;rt werden, mit welcher statistischen Unsicherheit bei endlichem&nbsp; $N$&nbsp; gerechnet werden muss.
  
Dagegen muss zur messtechnischen Ermittlung der &Uuml;bertragungsqualit&auml;t oder bei der Systemsimulation auf die vergleichbare A-posteriori-Kenngr&ouml;&szlig;e '''Bitfehlerquote''' (englisch: &nbsp; <i>Bit Error Rate</i>) &uuml;bergegangen werden:
 
:$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
 
  
$h_{\rm B}$ ist eine [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung#Definition_der_Bitfehlerquote|relative H&auml;ufigkeit]]. $n_{\rm B}$ gibt die Anzahl der aufgetretenen Bitfehler an, wenn insgesamt $N$ Symbole (Bit) &uuml;bertragen wurden.
 
  
*Im Grenzfall $N \to \infty$ stimmt die relative H&auml;ufigkeit $h_{\rm B}$ mit der Wahrscheinlichkeit $p_{\rm B}$ &uuml;berein.
 
*Hier soll nun die Frage gekl&auml;rt werden, mit welcher statistischen Unsicherheit bei endlichem $N$ gerechnet werden muss.
 
  
  
Zeile 38: Zeile 45:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgröße|Gaußverteilte Zufallsgrößen]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgröße|Gaußverteilte Zufallsgrößen]].
 
   
 
   
 
*L&ouml;sen Sie die Aufgaben so weit wie m&ouml;glich allgemein.  
 
*L&ouml;sen Sie die Aufgaben so weit wie m&ouml;glich allgemein.  
*Verwenden Sie zur Kontrolleingabe die Parameterwerte  $p_{\rm B} = 10^{-3}$ und $N = 10^{5}$.  
+
*Verwenden Sie zur Kontrolleingabe die Parameterwerte&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$.  
 
*Nachfolgend finden Sie einige Werte der sogenannten Q-Funktion:
 
*Nachfolgend finden Sie einige Werte der sogenannten Q-Funktion:
 
:$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$  
 
:$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$  
Zeile 54: Zeile 61:
 
{Welche der folgenden Aussagen sind zutreffend?
 
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
- Für $n_{\rm B}$ sind alle Werte $(0$, ... , $N)$ gleichwahrscheinlich.
+
- Für&nbsp; $n_{\rm B}$&nbsp; sind alle Werte&nbsp; $(0$, ... , $N)$&nbsp; gleichwahrscheinlich.
+ Die Zufallsgr&ouml;&szlig;e $n_{\rm B}$ ist binomialverteilt.
+
+ Die Zufallsgr&ouml;&szlig;e&nbsp; $n_{\rm B}$&nbsp; ist binomialverteilt.
+ Mit $p_{\rm B} = 10^{-3}$ und $N = 10^{5}$ ergibt sich ${\rm E}\big[n_{\rm B}\big] = 100$.
+
+ Mit&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$&nbsp; ergibt sich&nbsp; ${\rm E}\big[n_{\rm B}\big] = 100$.
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e $n_{\rm B}$ für $p_{\rm B} = 10^{-3}$ und $N = 10^{5}$?
+
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $n_{\rm B}$&nbsp; für&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{n{\rm B}} \ = \ $  { 10 3% }  
 
$\sigma_{n{\rm B}} \ = \ $  { 10 3% }  
  
  
{Welche Werte kann die Bitfehlerquote $h_{\rm B}$ annehmen? Zeigen Sie, dass der lineare Mittelwert $m_{h{\rm B}}$ dieser Zufallsgröße gleich der tats&auml;chlichen Bitfehlerwahrscheinlichkeit $p_{\rm B}$ ist. Wie gro&szlig; ist deren Streuung?
+
{Welche Werte kann die Bitfehlerquote&nbsp; $h_{\rm B}$&nbsp; annehmen?&nbsp; <br>Zeigen Sie, dass der lineare Mittelwert&nbsp; $m_{h{\rm B}}$&nbsp; dieser Zufallsgröße gleich der tats&auml;chlichen Bitfehlerwahrscheinlichkeit&nbsp; $p_{\rm B}$&nbsp; ist.&nbsp; Wie gro&szlig; ist deren Streuung?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{h{\rm B}} \ =  \ $ { 0.0001 3% }  
 
$\sigma_{h{\rm B}} \ =  \ $ { 0.0001 3% }  
  
  
{Unter gewissen Voraussetzungen kann eine binomialverteilte Zufallsgr&ouml;&szlig;e durch eine Gau&szlig;verteilung mit gleichem Mittelwert  $(m_{h{\rm B}})$ und gleicher Streuung $(\sigma_{h{\rm B}})$ angen&auml;hert werden. Welche Aussage ist zutreffend?
+
{Unter gewissen Voraussetzungen kann eine binomialverteilte Zufallsgr&ouml;&szlig;e durch eine Gau&szlig;verteilung mit gleichem Mittelwert&nbsp; $(m_{h{\rm B}})$&nbsp; und gleicher Streuung&nbsp; $(\sigma_{h{\rm B}})$&nbsp; angen&auml;hert werden.&nbsp; Welche Aussage ist zutreffend?
 
|type="()"}
 
|type="()"}
+ ${\rm Pr}(|h_{\rm B} - p_{\rm B}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{h{\rm B}}}).$
+
+ ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{{\it h}{\rm B}}}).$
- ${\rm Pr}(|h_{\rm B} - p_{\rm B}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{h{\rm B}}}).$
+
- ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{{\it h}{\rm B}}}).$
  
  
  
{Zur Abk&uuml;rzung verwenden wir das Konfidenzniveau $p_\varepsilon = {\rm Pr}(|h_{\rm B} - p_{\rm B}| \le \varepsilon)$. <br>Welches  $p_\varepsilon$ ergibt sich mit $\varepsilon = 10^{-4}$, $p_{\rm B} = 10^{-3}$ und $N = 10^{5}$?
+
{Zur Abk&uuml;rzung verwenden wir das Konfidenzniveau&nbsp; $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$.&nbsp; Welches&nbsp;   $p_\varepsilon$&nbsp; ergibt sich mit&nbsp; $\varepsilon = 10^{-4}$,&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$p_\varepsilon \ =  \ $ { 0.684 3% }
 
$p_\varepsilon \ =  \ $ { 0.684 3% }
  
  
{Das Argument der Q-Funktion sei $\alpha$. Wie gro&szlig; muss  $\alpha$ mindestens gew&auml;hlt werden, damit das Konfidenzniveau  $p_\varepsilon =  95\%$ betr&auml;gt?
+
{Das Argument der Q-Funktion sei&nbsp; $\alpha$.&nbsp; Wie gro&szlig; muss&nbsp; $\alpha$&nbsp; mindestens gew&auml;hlt werden, damit das Konfidenzniveau&nbsp; $p_\varepsilon =  95\%$&nbsp; betr&auml;gt&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$\alpha_{\rm min} \ =  \ $ { 1.96 3% }
 
$\alpha_{\rm min} \ =  \ $ { 1.96 3% }
  
  
{Es gelte weiterhin $p_{\rm B} = 10^{-3}$ und $p_\varepsilon =  95\%$ &Uuml;ber wie viele Symbole muss man mindestens gemittelt werden, damit die ermittelte Bitfehlerquote im Bereich zwischen $0.9 \cdot 10^{-3}$ und $1.1 \cdot 10^{-3}$ liegt $(\varepsilon = 10^{-4}, \text{10% vom Sollwert)}$?
+
{Es gelte weiterhin&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $p_\varepsilon =  95\%$. &nbsp; &Uuml;ber wie viele Symbole&nbsp;  $(N_\text{min})$&nbsp; muss mindestens gemittelt werden, <br>damit die ermittelte Bitfehlerquote im Bereich zwischen&nbsp; $0.9 \cdot 10^{-3}$&nbsp; und&nbsp; $1.1 \cdot 10^{-3}$&nbsp; liegt &nbsp; $(\varepsilon = 10^{-4}, \ \text{10% vom Sollwert)}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$N_\text{min} \ =  \ ${ 400000 3% }
 
$N_\text{min} \ =  \ ${ 400000 3% }

Version vom 21. November 2019, 17:14 Uhr

Zur Verdeutlichung der Bitfehlerquote

Wir betrachten ein binäres Übertragungssystem mit

  • der Quellensymbolfolge  $\langle q_\nu \rangle $  und
  • der Sinkensymbolfolge  $\langle v_\nu \rangle $.


Stimmen Sinkensymbol  $v_\nu$  und Quellensymbol  $q_\nu$  nicht überein, so liegt ein Bitfehler vor   ⇒   $e_\nu = 1$.
Ansonsten gilt  $e_\nu = 0$.


$\rm (A)$  Das wichtigste Beurteilungskriterium eines solchen Digitalsystems ist

die  Bitfehlerwahrscheinlichkeit  (englisch:   Bit Error Probability).
  • Mit dem Erwartungswert  ${\rm E}\big[\text{ ...} \big]$  ist diese ist wie folgt definiert:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1).$$
  • Der rechte Teil dieser Gleichung beschreibt eine Zeitmittelung; diese muss zum Beispiel bei zeitvarianten Kanälen stets angewandt werden.
  • Ist die Fehlerwahrscheinlichkeit für alle Symbole gleich (was hier vorausgesetzt wird), so kann man die obige Gleichung vereinfachen:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
Die Bitfehlerwahrscheinlichkeit ist eine A-priori-Kenngröße, erlaubt also eine Vorhersage für das zu erwartende Resultat.


$\rm (B)$  Dagegen muss zur messtechnischen Ermittlung der Übertragungsqualität oder bei der Systemsimulation auf

die vergleichbare A-posteriori-Kenngröße  Bitfehlerquote  (englisch:   Bit Error Rate)  übergegangen werden:
$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
  • $h_{\rm B}$  ist eine  relative Häufigkeit.  $n_{\rm B}$  gibt die Anzahl der aufgetretenen Bitfehler an, wenn insgesamt  $N$  Symbole (Bit) übertragen wurden.
  • Im Grenzfall  $N \to \infty$  stimmt die relative Häufigkeit  $h_{\rm B}$  mit der Wahrscheinlichkeit  $p_{\rm B}$  überein.
  • Hier soll nun die Frage geklärt werden, mit welcher statistischen Unsicherheit bei endlichem  $N$  gerechnet werden muss.





Hinweise:

  • Lösen Sie die Aufgaben so weit wie möglich allgemein.
  • Verwenden Sie zur Kontrolleingabe die Parameterwerte  $p_{\rm B} = 10^{-3}$  und  $N = 10^{5}$.
  • Nachfolgend finden Sie einige Werte der sogenannten Q-Funktion:
$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

Für  $n_{\rm B}$  sind alle Werte  $(0$, ... , $N)$  gleichwahrscheinlich.
Die Zufallsgröße  $n_{\rm B}$  ist binomialverteilt.
Mit  $p_{\rm B} = 10^{-3}$  und  $N = 10^{5}$  ergibt sich  ${\rm E}\big[n_{\rm B}\big] = 100$.

2

Wie groß ist die Streuung der Zufallsgröße  $n_{\rm B}$  für  $p_{\rm B} = 10^{-3}$  und  $N = 10^{5}$?

$\sigma_{n{\rm B}} \ = \ $

3

Welche Werte kann die Bitfehlerquote  $h_{\rm B}$  annehmen? 
Zeigen Sie, dass der lineare Mittelwert  $m_{h{\rm B}}$  dieser Zufallsgröße gleich der tatsächlichen Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  ist.  Wie groß ist deren Streuung?

$\sigma_{h{\rm B}} \ = \ $

4

Unter gewissen Voraussetzungen kann eine binomialverteilte Zufallsgröße durch eine Gaußverteilung mit gleichem Mittelwert  $(m_{h{\rm B}})$  und gleicher Streuung  $(\sigma_{h{\rm B}})$  angenähert werden.  Welche Aussage ist zutreffend?

${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{{\it h}{\rm B}}}).$
${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{{\it h}{\rm B}}}).$

5

Zur Abkürzung verwenden wir das Konfidenzniveau  $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$.  Welches  $p_\varepsilon$  ergibt sich mit  $\varepsilon = 10^{-4}$,  $p_{\rm B} = 10^{-3}$  und  $N = 10^{5}$ ?

$p_\varepsilon \ = \ $

6

Das Argument der Q-Funktion sei  $\alpha$.  Wie groß muss  $\alpha$  mindestens gewählt werden, damit das Konfidenzniveau  $p_\varepsilon = 95\%$  beträgt ?

$\alpha_{\rm min} \ = \ $

7

Es gelte weiterhin  $p_{\rm B} = 10^{-3}$  und  $p_\varepsilon = 95\%$.   Über wie viele Symbole  $(N_\text{min})$  muss mindestens gemittelt werden,
damit die ermittelte Bitfehlerquote im Bereich zwischen  $0.9 \cdot 10^{-3}$  und  $1.1 \cdot 10^{-3}$  liegt   $(\varepsilon = 10^{-4}, \ \text{10% vom Sollwert)}$ ?

$N_\text{min} \ = \ $


Musterlösung

(1)  Die beiden letzten Aussagen stimmen:

  • Bezüglich der Zufallsgröße $n_{\rm B}$ liegt der klassische Fall einer Binomialverteilung vor.
  • Es wird die Summe über $N$ binäre Zufallsgrößen gebildet.
  • Die möglichen Werte von $n_{\rm B}$ liegen somit zwischen $0$ und $N$.
  • Der lineare Mittelwert ergibt   $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$


(2)  Für die Streuung der Binomialverteilung gilt mit guter Näherung:

$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.$$


(3)  Mögliche Werte von $h_{\rm B}$ sind alle ganzzahligen Vielfachen von $1/N$. Diese liegen zwischen $0$ und $1$ liegen.

Für den Mittelwert erhält man:

$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$


Die Streuung ergibt sich zu

$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 10^{-4}}.$$


(4)  Richtig ist der erste Vorschlag. Es gilt:

$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),\hspace{0.5cm}\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}\hspace{0.5cm}\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$


(5)  Man erhält mit den Zahlenwerten $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:

$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$

Das heißt: Bestimmt man die Bitfehlerquote per Simulation über $10^5$ Symbole, so erhält man mit einem Konfidenzniveau von 68.4% einen Wert zwischen $0.9 \cdot 10^{-3}$ und $1.1 \cdot 10^{-3}$, wenn $p_{\rm B} = 10^{-3}$ ist.


(6)  Aus der Beziehung $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$ folgt direkt:

$$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$


(7)  Es muss $\alpha = \varepsilon/\sigma_{h{\rm B}}$ gelten. Mit dem Ergebnis der Teilaufgabe (2) folgt dann:

$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400000}.$$