Aufgaben:Aufgabe 5.9: Minimierung des MQF: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 82: Zeile 82:
 
:$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
 
:$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  
*Mit $Q = 3$ folgt daraus:
+
*Mit   $Q = 3$  folgt daraus:
 
:$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1}  \hspace{0.15cm}\underline {= 0.75},$$
 
:$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1}  \hspace{0.15cm}\underline {= 0.75},$$
 
:$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5}  \hspace{0.15cm}\underline {= 0.375}.$$
 
:$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5}  \hspace{0.15cm}\underline {= 0.375}.$$
  
  
'''(3)'''  Für das in der Teilaufgabe '''(2)''' berechnete Filter gilt unter Berücksichtigung der Symmetrie:
+
 
 +
'''(3)'''  Für das in der Teilaufgabe  '''(2)'''  berechnete Filter gilt unter Berücksichtigung der Symmetrie:
 
:$${\rm{MQF = }}\int_{-\infty}^{+\infty}  H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty}  \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
 
:$${\rm{MQF = }}\int_{-\infty}^{+\infty}  H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty}  \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
  
Zeile 96: Zeile 97:
 
:$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty  ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
 
:$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty  ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  
*Normiert man MQF auf die Nutzleistung $P_s$, so erhält man für $Q=3$:
+
*Normiert man MQF auf die Nutzleistung  $P_s$, so erhält man für  $Q=3$:
 
:$$\frac{\rm{MQF}}{P_s}  = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$
 
:$$\frac{\rm{MQF}}{P_s}  = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$
  
  
'''(4)'''  Aus der Berechnung in in der Teilaufgabe '''(3)''' folgt für ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung $Q \ge 99$   ⇒   $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$.  
+
 
*Je größer $Q$ ist, desto kleiner wird der mittlere quadratische Fehler.
+
'''(4)'''  Aus der Berechnung in der Teilaufgabe  '''(3)'''  folgt für  ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung  $Q \ge 99$   ⇒   $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$.  
 +
*Je größer  $Q$  ist, desto kleiner wird der mittlere quadratische Fehler.
 +
 
  
  
  
 
'''(5)'''&nbsp; Richtig ist <u>nur der zweite Lösungsvorschlag</u>:
 
'''(5)'''&nbsp; Richtig ist <u>nur der zweite Lösungsvorschlag</u>:
*Ein zum Wiener&ndash;Kolmogorow&ndash;Filterr formgleicher Frequenzgang &nbsp;&#8658;&nbsp; $H(f) = K \cdot H_{\rm WF}(f)$ mit $K \ne 1$ führt stets zu großen Verfälschungen.  
+
*Ein zum Wiener&ndash;Kolmogorow&ndash;Filter formgleicher Frequenzgang &nbsp; &#8658; &nbsp; $H(f) = K \cdot H_{\rm WF}(f)$&nbsp; mit&nbsp; $K \ne 1$&nbsp; führt stets zu großen Verfälschungen.  
*Dies kann man sich zum Beispiel am rauschfreien Fall ($Q \to \infty$) verdeutlichen:
+
*Dies kann man sich zum Beispiel am rauschfreien Fall&nbsp; $(Q \to \infty)$&nbsp; verdeutlichen.&nbsp; In diesem Fall wäre&nbsp; $d(t) = K \cdot s(t)$&nbsp; und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst.
:In diesem Fall wäre $d(t) = K \cdot s(t)$ und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst.
 
 
*Aus der Gleichung
 
*Aus der Gleichung
 
:$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)}  \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
 
:$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)}  \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
:könnte man fälschlicherweise schließen, dass durch ein Filter $H(f) = 2 \cdot H_{\rm WF}(f))$ der mittlere quadratische Fehler nur verdoppelt wird.  
+
:könnte man fälschlicherweise schließen, dass durch ein Filter&nbsp; $H(f) = 2 \cdot H_{\rm WF}(f)$&nbsp; der mittlere quadratische Fehler nur verdoppelt wird.  
*Dem ist jedoch nicht so, da $H(f)$dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar.
+
*Dem ist jedoch nicht so, da&nbsp; $H(f)$&nbsp; dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar.
  
  
 
[[Datei:P_ID651__Sto_A_5_9_e.png|right|frame|Leistungsdichtespektren beim Wiener-Filter]]
 
[[Datei:P_ID651__Sto_A_5_9_e.png|right|frame|Leistungsdichtespektren beim Wiener-Filter]]
 
Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze  hervorgeht.  
 
Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze  hervorgeht.  
*Die Punkte markieren den Frequenzgang $H_{\rm WF}(f))$ des Wiener&ndash;Kolmogorow&ndash;Filters für $Q = 3$ bzw. für $Q = 10$.  
+
*Die Punkte markieren den Frequenzgang&nbsp; $H_{\rm WF}(f))$&nbsp; des Wiener&ndash;Kolmogorow&ndash;Filters für&nbsp; $Q = 3$&nbsp; bzw. für&nbsp; $Q = 10$.  
*Bei größerem $Q (= 10)$ werden hohe Anteile weniger gedämpft als bei niedrigerem $Q (= 3)$.  
+
*Bei größerem&nbsp; $Q (= 10)$&nbsp; werden hohe Anteile weniger gedämpft als bei niedrigerem&nbsp; $Q (= 3)$.  
*Deshalb beinhaltet das  Filterausgangssignal im Fall $Q = 10$ auch  mehr höherfrequente Anteile, die auf das Rauschen  $n(t)$ zurückgehen.
+
*Deshalb beinhaltet das  Filterausgangssignal im Fall&nbsp; $Q = 10$&nbsp; auch  mehr höherfrequente Anteile, die auf das Rauschen&nbsp;   $n(t)$&nbsp; zurückgehen.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 10. Dezember 2019, 12:15 Uhr

Leistungsdichtespektren
beim Wiener-Filter

Gegeben ist ein stochastisches Nutzsignal  $s(t)$, von dem nur das Leistungsdichtespektrum (LDS) bekannt ist:

$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$

Dieses Leistungsdichtespektrum  ${\it \Phi} _s (f)$  ist in der nebenstehenden Grafik blau dargestellt.

  • Die mittlere Leistung von  $s(t)$  ergibt sich durch Integration über das Leistungsdichtespektrum:
$$P_s = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0 \cdot f_0 \cdot {\rm{\pi }}.$$
  • Additiv überlagert ist dem Nutzsignal  $s(t)$  Weißes Rauschen  $n(t)$  mit der Rauschleistungsdichte  ${\it \Phi}_n(f) = N_0/2.$
  • Als Abkürzung verwenden wir  $Q = 2 \cdot {\it \Phi}_0/N_0$, wobei  $Q$  als „Qualität” interpretiert werden könnte.
  • Zu beachten ist, dass  $Q$  kein Signal–zu–Rauschleistungsverhältnis darstellt.


In dieser Aufgabe soll der Frequenzgang  $H(f)$  eines Filters ermittelt werden, das den mittleren quadratischen Fehler  $\rm (MQF)$  zwischen dem Nutzsignal  $s(t)$  und dem Filterausgangssignal  $d(t)$  minimiert:

$${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$




Hinweise:

  • Zur Lösung vorgegeben wird das folgende unbestimmte Integral:
$$\int {\frac{1}{a^2 + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

$H(f)$  ist ein Gaußtiefpass.
$H(f)$  stellt ein Matched–Filter dar.
$H(f)$  ist ein Wiener–Kolmogorow–Filter.

2

Bestimmen Sie den Frequenzgang  $H(f)$  des hierfür optimalen Filters.  Welche Werte ergeben sich mit  $Q = 3$  bei  $f = 0$  und  $f = 2f_0$?

$H(f = 0) \ = \ $

$H(f = 2f_0)\ = \ $

3

Es gelte weiter  $Q = 3$.  Berechnen Sie den mittleren quadratischen Fehler  $(\rm MQF)$  bezogen auf  $P_s$  für das bestmögliche Filter.

${\rm MQF}/P_s \ = \ $

4

Wie groß muss der „Qualitätsfaktor”  $Q$  mindestens gewählt werden, damit für den Quotienten der Wert  ${\rm MQF}/P_s = 0.1$  erreicht werden kann?

$Q_\text{min} \ = \ $

5

Welche der folgenden Aussagen sind zutreffend?

Ein formgleiches Filter  $H(f) = K \cdot H_{\rm WF}(f)$  führt zum gleichen Ergebnis.
Das Ausgangssignal  $d(t)$  enthält bei größerem  $Q$  mehr höherfrequente Anteile.


Musterlösung

(1)  Richtig ist nur der letzte Lösungsvorschlag:

  • Die Aufgabenstellung   ⇒   „Minimierung des mittleren quadratischen Fehlers” weist bereits auf das Filter nach Wiener–Kolmogorow hin.
  • Das Matched–Filter verwendet man dagegen, um die Signalenergie zu bündeln und dadurch für einen vorgegebenen Zeitpunkt das S/N–Verhältnis zu maximieren.


(2)  Für den optimalen Frequenzgang gilt nach Wiener und Kolmogorow allgemein:

$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  • Mit den gegebenen Leistungsdichtespektren kann hierfür auch geschrieben werden:
$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  • Mit  $Q = 3$  folgt daraus:
$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$
$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$


(3)  Für das in der Teilaufgabe  (2)  berechnete Filter gilt unter Berücksichtigung der Symmetrie:

$${\rm{MQF = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
  • Hierfür kann mit  $Q = 2 \cdot {\it \Phi}_0/N_0$  und  $a^2 = Q + 1$  auch geschrieben werden:
$${\rm{MQF = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$
  • Mit dem angegebenen Integral führt dies zum Ergebnis:
$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  • Normiert man MQF auf die Nutzleistung  $P_s$, so erhält man für  $Q=3$:
$$\frac{\rm{MQF}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$


(4)  Aus der Berechnung in der Teilaufgabe  (3)  folgt für  ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung  $Q \ge 99$   ⇒   $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$.

  • Je größer  $Q$  ist, desto kleiner wird der mittlere quadratische Fehler.



(5)  Richtig ist nur der zweite Lösungsvorschlag:

  • Ein zum Wiener–Kolmogorow–Filter formgleicher Frequenzgang   ⇒   $H(f) = K \cdot H_{\rm WF}(f)$  mit  $K \ne 1$  führt stets zu großen Verfälschungen.
  • Dies kann man sich zum Beispiel am rauschfreien Fall  $(Q \to \infty)$  verdeutlichen.  In diesem Fall wäre  $d(t) = K \cdot s(t)$  und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst.
  • Aus der Gleichung
$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
könnte man fälschlicherweise schließen, dass durch ein Filter  $H(f) = 2 \cdot H_{\rm WF}(f)$  der mittlere quadratische Fehler nur verdoppelt wird.
  • Dem ist jedoch nicht so, da  $H(f)$  dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar.


Leistungsdichtespektren beim Wiener-Filter

Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze hervorgeht.

  • Die Punkte markieren den Frequenzgang  $H_{\rm WF}(f))$  des Wiener–Kolmogorow–Filters für  $Q = 3$  bzw. für  $Q = 10$.
  • Bei größerem  $Q (= 10)$  werden hohe Anteile weniger gedämpft als bei niedrigerem  $Q (= 3)$.
  • Deshalb beinhaltet das Filterausgangssignal im Fall  $Q = 10$  auch mehr höherfrequente Anteile, die auf das Rauschen  $n(t)$  zurückgehen.