Aufgaben:Aufgabe 1.5: Binäre Markovquelle: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 90: Zeile 90:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[Datei:Inf_A_1_5a_vers2.png|right|frame|Markovdiagramm für die Teilaufgaben '''(1)''', ... , '''(5)''']]
+
[[Datei:Inf_A_1_5a_vers2.png|right|frame|Markovdiagramm für die Teilaufgaben  '''(1)''', ... ,  '''(5)''']]
Nach $\rm A$ sind $\rm A$ und $\rm B$ gleichwahrscheinlich. Nach $\rm B$  tritt $\rm B$ sehr viel häufiger als $\rm A$ auf. Für die Übergangswahrscheinlichkeiten gilt:
+
Nach  $\rm A$  sind  $\rm A$  und  $\rm B$  gleichwahrscheinlich.  Nach  $\rm B$  tritt  $\rm B$  sehr viel häufiger als  $\rm A$  auf.  Für die Übergangswahrscheinlichkeiten gilt:
 
:$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},$$
 
:$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},$$
 
:$$ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.$$
 
:$$ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} =  \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.$$
 +
  
  
Zeile 99: Zeile 100:
 
:$$p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{0.5cm}
 
:$$p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{0.5cm}
 
p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667}  \hspace{0.05cm}.$$
 
p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667}  \hspace{0.05cm}.$$
 +
  
  
Zeile 105: Zeile 107:
 
  1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/Symbol}}  
 
  1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
  
  
Zeile 111: Zeile 114:
 
{\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}}
 
{\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Für die Verbundwahrscheinlichkeiten gilt:
+
*Für die Verbundwahrscheinlichkeiten gilt:
 
:$$p_{\rm AA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} =
 
:$$p_{\rm AA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} =
 
  \frac{1/2 \cdot 1/4}{3/4} =  {1}/{6} \hspace{0.05cm},$$
 
  \frac{1/2 \cdot 1/4}{3/4} =  {1}/{6} \hspace{0.05cm},$$
Zeile 126: Zeile 129:
  
  
'''(5)'''  Allgemein gilt mit $H_{\rm M} = H$ für die $k$–te Entropienäherung:   $H_k =  {1}/{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}]  \hspace{0.05cm}.$ Daraus folgt:
+
 
 +
'''(5)'''  Allgemein gilt mit  $H_{\rm M} = H$  für die  $k$–te Entropienäherung:    
 +
:$$H_k =  {1}/{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}]  \hspace{0.05cm}.$$
 +
*Daraus folgt:
 
:$$H_2 =  {1}/{2} \cdot [ 0.918 + 1  \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/Symbol}}  
 
:$$H_2 =  {1}/{2} \cdot [ 0.918 + 1  \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
Zeile 135: Zeile 141:
  
  
[[Datei:Inf_A_1_5f_vers2.png|right|frame|Markovdiagramm zur Teilaufgaben '''(6)''']]
+
[[Datei:Inf_A_1_5f_vers2.png|right|frame|Markovdiagramm zur Teilaufgabe  '''(6)''']]
'''(6)'''  Mit dem neuen Parametersatz ($p = 1/4, q = 3/4$) erhält man für die Symbolwahrscheinlichkeiten:  
+
'''(6)'''  Mit dem neuen Parametersatz  $(p = 1/4, q = 3/4)$  erhält man für die Symbolwahrscheinlichkeiten:  
 
:$$ p_{\rm A} =  1/4, \ p_{\rm B} =  3/4.$$  
 
:$$ p_{\rm A} =  1/4, \ p_{\rm B} =  3/4.$$  
  
Dieser Sonderfall führt demnach zu statistisch unabhängigen Symbolen:
+
*Dieser Sonderfall führt demnach zu statistisch unabhängigen Symbolen:
 
:$$ p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}
 
:$$ p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}
 
  \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}
 
  \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Damit ist die Entropie $H$ identisch mit der Entropienäherung $H_1$:
+
*Damit ist die Entropie  $H$  identisch mit der Entropienäherung  $H_1$:
 
:$$H = H_{\rm 1}  =  1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) =
 
:$$H = H_{\rm 1}  =  1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) =
 
  2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}}  
 
  2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Die Entropienäherungen $H_2$, $H_3$, $H_4$, ...  liefern hier ebenfalls das Ergebnis $0.811 \, \rm bit/Symbol$.
+
*Die Entropienäherungen  $H_2$,  $H_3$,  $H_4$,  ...  liefern hier ebenfalls das Ergebnis  $0.811 \, \rm bit/Symbol$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 17. Januar 2020, 15:59 Uhr

Binäres Markovdiagramm

Die  Aufgabe 1.4  hat gezeigt, dass die Berechnung der Entropie bei einer gedächtnisbehafteten Quelle sehr aufwändig sein kann.  Man muss dann zunächst (sehr viele) Entropienäherungen  $H_k$  für  $k$–Tupel berechnen und kann erst dann die Quellenentropie mit dem Grenzübergang  $k \to \infty$  ermitteln:

$$H = \lim_{k \rightarrow \infty } H_k \hspace{0.05cm}.$$

Oft tendiert dabei  $H_k$  nur sehr langsam gegen den Grenzwert  $H$.

Der Rechengang wird drastisch reduziert, wenn die Nachrichtenquelle Markoveigenschaften besitzt.  Die Grafik zeigt das Übergangsdiagramm für eine binäre Markovquelle mit den zwei Zuständen (Symbolen)  $\rm A$  und  $\rm B$.

  • Dieses ist durch die beiden bedingten Wahrscheinlichkeiten  $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} = p$  und  $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = q$  eindeutig bestimmt.
  • Die anderen bedingten Wahrscheinlichkeiten  $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}$  und  $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}$  sowie die (unbedingten) Symbolwahrscheinlichkeiten  $p_{\rm A}$   und  $p_{\rm B}$  lassen sich daraus ermitteln.


Die Entropie der binären Markovkette  (mit der Einheit „bit/Symbol”)  lautet dann:

$$H = H_{\rm M} = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.$$

Bei dieser Gleichung ist zu beachten, dass im Argument des Logarithmus dualis  jeweils die  bedingten Wahrscheinlichkeiten  $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}$,  $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}$, ...   einzusetzen sind, während für die Gewichtung die  Verbundwahrscheinlichkeiten  $p_{\rm AA}$,  $p_{\rm AB}$, ...   zu verwenden sind.

Mit der Entropienäherung erster Ordnung,

$$H_1 = p_{\rm A} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A}} + p_{\rm B} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol})\hspace{0.05cm},$$

sowie der oben angegebenen (tatsächlichen) Entropie  $H = H_{\rm M}$  lassen sich bei einer Markovquelle auch alle weiteren Entropienäherungen  $(k = 2,, 3, \text{...})$  direkt angeben:

$$H_k = \frac{1}{k} \cdot \big [ H_{\rm 1} + (k-1) \cdot H_{\rm M} \big ] \hspace{0.05cm}.$$





Hinweise:

  • Für die (ergodischen) Symbolwahrscheinlichkeiten einer Markovkette erster Ordnung gilt:
$$ p_{\rm A} = \frac {p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}, \hspace{0.3cm} p_{\rm B} = \frac {p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}.$$



Fragebogen

1

Geben Sie die Übergangswahrscheinlichkeiten für  $p = 1/4$  und  $q = 1/2$ an.

$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \ = \ $

$p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \ = \ $

2

Wie groß sind die (unbedingten) Symbolwahrscheinlichkeiten?  Es gelte weiterhin  $p = 1/4$  und  $q = 1/2$.

$p_{\rm A} \ = \ $

$p_{\rm B} \ = \ $

3

Geben Sie die dazugehörige Entropienäherung erster Ordnung an.

$H_1 \ = \ $

$\ \rm bit/Symbol$

4

Welche Entropie  $H = H_{\rm M}$  besitzt diese Markovquelle mit  $p = 1/4$  und  $q = 1/2$?

$H \ = \ $

$\ \rm bit/Symbol$

5

Welche Entropienäherungen  $H_k$  ergeben sich aufgrund der Markoveigenschaften?

$H_2 \ = \ $

$\ \rm bit/Symbol$
$H_3 \ = \ $

$\ \rm bit/Symbol$
$H_4 \ = \ $

$\ \rm bit/Symbol$

6

Welche Entropie  $H = H_{\rm M}$  besitzt die Markovquelle mit  $p = 1/4$  und  $q = 3/4$?

$H \ = \ $

$\ \rm bit/Symbol$


Musterlösung

Markovdiagramm für die Teilaufgaben  (1), ... ,  (5)

Nach  $\rm A$  sind  $\rm A$  und  $\rm B$  gleichwahrscheinlich.  Nach  $\rm B$  tritt  $\rm B$  sehr viel häufiger als  $\rm A$  auf.  Für die Übergangswahrscheinlichkeiten gilt:

$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},$$
$$ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.$$


(2)  Entsprechend den angegebenen Gleichungen gilt:

$$p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{0.5cm} p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667} \hspace{0.05cm}.$$


(3)  Mit den in der letzten Teilaufgabe berechneten Wahrscheinlichkeiten gilt:

$$H_{\rm 1} = H_{\rm bin}(p_{\rm A}) = 1/3 \cdot {\rm log}_2\hspace{0.01cm} (3) + 2/3 \cdot {\rm log}_2\hspace{0.01cm} (1.5) = 1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$


(4)  Die Entropie der Markovquelle lautet entsprechend der Angabe:

$$H = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.$$
  • Für die Verbundwahrscheinlichkeiten gilt:
$$p_{\rm AA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = {1}/{6} \hspace{0.05cm},$$
$$ p_{\rm AB} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = q \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = {1}/{6} \hspace{0.05cm},$$
$$ p_{\rm BA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = p \cdot \frac{q}{p+q} = p_{\rm AB} = {1}/{6} \hspace{0.05cm},$$
$$ p_{\rm BB} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = (1-p) \cdot \frac{q}{p+q} = \frac{3/4 \cdot 1/2}{3/4} = {1}/{2} $$
$$\Rightarrow\hspace{0.3cm} H = 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (4) + 1/2 \cdot {\rm log}_2\hspace{0.1cm} (4/3) = 10/6 - 1/2 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.875 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$


(5)  Allgemein gilt mit  $H_{\rm M} = H$  für die  $k$–te Entropienäherung:  

$$H_k = {1}/{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}] \hspace{0.05cm}.$$
  • Daraus folgt:
$$H_2 = {1}/{2} \cdot [ 0.918 + 1 \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/Symbol}} \hspace{0.05cm},$$
$$ H_3 = {1}/{3} \cdot [ 0.918 + 2 \cdot 0.875] \hspace{0.15cm} \underline {= 0.889 \,{\rm bit/Symbol}} \hspace{0.05cm},$$
$$ H_4 = {1}/{4} \cdot [ 0.918 + 3 \cdot 0.875] \hspace{0.15cm} \underline {= 0.886 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$


Markovdiagramm zur Teilaufgabe  (6)

(6)  Mit dem neuen Parametersatz  $(p = 1/4, q = 3/4)$  erhält man für die Symbolwahrscheinlichkeiten:

$$ p_{\rm A} = 1/4, \ p_{\rm B} = 3/4.$$
  • Dieser Sonderfall führt demnach zu statistisch unabhängigen Symbolen:
$$ p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}.$$
  • Damit ist die Entropie  $H$  identisch mit der Entropienäherung  $H_1$:
$$H = H_{\rm 1} = 1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) = 2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
  • Die Entropienäherungen  $H_2$,  $H_3$,  $H_4$,  ...  liefern hier ebenfalls das Ergebnis  $0.811 \, \rm bit/Symbol$.