Aufgaben:Aufgabe 3.11Z: Extrem unsymmetrischer Kanal: Unterschied zwischen den Versionen
Zeile 5: | Zeile 5: | ||
[[Datei:P_ID2800__Inf_Z_3_10.png|right|frame|Einseitig verfälschender Kanal]] | [[Datei:P_ID2800__Inf_Z_3_10.png|right|frame|Einseitig verfälschender Kanal]] | ||
Betrachtet wird der nebenstehend gezeichnete Kanal mit den folgenden Eigenschaften: | Betrachtet wird der nebenstehend gezeichnete Kanal mit den folgenden Eigenschaften: | ||
− | * Das Symbol $X = 0$ wird immer richtig übertragen und führt stets zum Ergebnis $Y = 0$. | + | * Das Symbol $X = 0$ wird immer richtig übertragen und führt stets zum Ergebnis $Y = 0$. |
− | * Das Symbol $X = 1$ wird maximal verfälscht. Aus Sicht der Informationstheorie bedeutet dies: | + | * Das Symbol $X = 1$ wird maximal verfälscht. |
− | :$${\rm Pr}(Y \hspace{-0.05cm} = 0\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) ={\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = 0.5 \hspace{0.05cm}$$ | + | |
+ | |||
+ | Aus Sicht der Informationstheorie bedeutet dies: | ||
+ | :$${\rm Pr}(Y \hspace{-0.05cm} = 0\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) ={\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = 0.5 \hspace{0.05cm}.$$ | ||
Zu bestimmen sind in dieser Aufgabe: | Zu bestimmen sind in dieser Aufgabe: | ||
− | * die Transinformation $I(X; Y)$ für $P_X(0) = p_0 = 0.4$ und $P_X(1) = p_1 = 0.6$. Es gilt allgemein: | + | * die Transinformation $I(X; Y)$ für $P_X(0) = p_0 = 0.4$ und $P_X(1) = p_1 = 0.6$. <br>Es gilt allgemein: |
:$$ I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y)\hspace{0.05cm}=H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm} =\hspace{-0.15cm} H(X) + H(Y)- H(XY)\hspace{0.05cm},$$ | :$$ I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y)\hspace{0.05cm}=H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm} =\hspace{-0.15cm} H(X) + H(Y)- H(XY)\hspace{0.05cm},$$ | ||
* die Kanalkapazität: | * die Kanalkapazität: | ||
:$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$ | :$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
Zeile 21: | Zeile 27: | ||
*Die Aufgabe gehört zum Kapitel [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung|Anwendung auf die Digitalsignalübertragung]]. | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung|Anwendung auf die Digitalsignalübertragung]]. | ||
*Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Kanalkapazit.C3.A4t_eines_Bin.C3.A4rkanals|Kanalkapazität eines Binärkanals]]. | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Kanalkapazit.C3.A4t_eines_Bin.C3.A4rkanals|Kanalkapazität eines Binärkanals]]. | ||
− | *In der [[Aufgaben:3.14_Kanalcodierungstheorem|Aufgabe 3.14]] sollen die hier gefundenen Ergebnisse im Vergleich zum BSC–Kanal interpretiert werden. | + | *In der [[Aufgaben:3.14_Kanalcodierungstheorem|Aufgabe 3.14]] sollen die hier gefundenen Ergebnisse im Vergleich zum BSC–Kanal interpretiert werden. |
Zeile 29: | Zeile 35: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Berechnen Sie die Quellenentropie allgemein und für $\underline{p_0 = 0.4}$. | + | {Berechnen Sie die Quellenentropie allgemein und für $\underline{p_0 = 0.4}$. |
|type="{}"} | |type="{}"} | ||
$H(X) \ = \ $ { 0.971 3% } $\ \rm bit$ | $H(X) \ = \ $ { 0.971 3% } $\ \rm bit$ | ||
− | {Berechnen Sie die Sinkenentropie allgemein und für $p_0 = 0.4$. | + | {Berechnen Sie die Sinkenentropie allgemein und für $p_0 = 0.4$. |
|type="{}"} | |type="{}"} | ||
$H(Y) \ = \ $ { 0.881 3% } $\ \rm bit$ | $H(Y) \ = \ $ { 0.881 3% } $\ \rm bit$ | ||
− | {Berechnen Sie die Verbundentropie allgemein und für $p_0 = 0.4$. | + | {Berechnen Sie die Verbundentropie allgemein und für $p_0 = 0.4$. |
|type="{}"} | |type="{}"} | ||
$H(XY) \ = \ $ { 1.571 3% } $\ \rm bit$ | $H(XY) \ = \ $ { 1.571 3% } $\ \rm bit$ | ||
− | {Berechnen Sie die Transinformation allgemein und für $p_0 = 0.4$. | + | {Berechnen Sie die Transinformation allgemein und für $p_0 = 0.4$. |
|type="{}"} | |type="{}"} | ||
$I(X; Y) \ = \ $ { 0.281 3% } $\ \rm bit$ | $I(X; Y) \ = \ $ { 0.281 3% } $\ \rm bit$ | ||
− | {Welche Wahrscheinlichkeit $p_0^{(*)}$ führt zur Kanalkapazität $C$? | + | {Welche Wahrscheinlichkeit $p_0^{(*)}$ führt zur Kanalkapazität $C$? |
|type="{}"} | |type="{}"} | ||
$p_0^{(*)} \ = \ $ { 0.6 3% } | $p_0^{(*)} \ = \ $ { 0.6 3% } | ||
Zeile 53: | Zeile 59: | ||
$C \ = \ $ { 0.322 3% } $\ \rm bit$ | $C \ = \ $ { 0.322 3% } $\ \rm bit$ | ||
− | {Wie groß sind die bedingten Entropien mit $p_0 = p_0^{(*)}$ gemäß Teilaufgabe '''(5)'''? | + | {Wie groß sind die bedingten Entropien mit $p_0 = p_0^{(*)}$ gemäß Teilaufgabe '''(5)'''? |
|type="{}"} | |type="{}"} | ||
$H(X|Y) \ = \ $ { 0.649 3% } $\ \rm bit$ | $H(X|Y) \ = \ $ { 0.649 3% } $\ \rm bit$ |
Version vom 6. Februar 2020, 16:40 Uhr
Betrachtet wird der nebenstehend gezeichnete Kanal mit den folgenden Eigenschaften:
- Das Symbol $X = 0$ wird immer richtig übertragen und führt stets zum Ergebnis $Y = 0$.
- Das Symbol $X = 1$ wird maximal verfälscht.
Aus Sicht der Informationstheorie bedeutet dies:
- $${\rm Pr}(Y \hspace{-0.05cm} = 0\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) ={\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = 0.5 \hspace{0.05cm}.$$
Zu bestimmen sind in dieser Aufgabe:
- die Transinformation $I(X; Y)$ für $P_X(0) = p_0 = 0.4$ und $P_X(1) = p_1 = 0.6$.
Es gilt allgemein:
- $$ I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y)\hspace{0.05cm}=H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm} =\hspace{-0.15cm} H(X) + H(Y)- H(XY)\hspace{0.05cm},$$
- die Kanalkapazität:
- $$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Anwendung auf die Digitalsignalübertragung.
- Bezug genommen wird insbesondere auf die Seite Kanalkapazität eines Binärkanals.
- In der Aufgabe 3.14 sollen die hier gefundenen Ergebnisse im Vergleich zum BSC–Kanal interpretiert werden.
Fragebogen
Musterlösung
- $$H(X) = H_{\rm bin}(p_0)= H_{\rm bin}(0.4) \hspace{0.15cm} \underline {=0.971\,{\rm bit}} \hspace{0.05cm}.$$
(2) Die Wahrscheinlichkeiten der Sinkensymbole sind:
- $$P_Y(1) = p_1/2 = (1 - p_0)/2 = 0.3\hspace{0.05cm},\hspace{0.2cm} P_Y(0) = 1-P_Y(1) = p_1/2 = (1 - p_0)/2 = 0.7$$
- $$\Rightarrow \hspace{0.3cm} H(Y) = H_{\rm bin}(\frac{1+p_0}{2})= H_{\rm bin}(0.7) \hspace{0.15cm} \underline {=0.881\,{\rm bit}} \hspace{0.05cm}.$$
(3) Die Verbundwahrscheinlichkeiten $p_{μκ} = {\rm Pr}\big[(X = μ) ∩ (Y = κ)\big] $ ergeben sich zu:
- $$ p_{00} = p_0 \hspace{0.05cm},\hspace{0.3cm} p_{01} = 0 \hspace{0.05cm},\hspace{0.3cm} p_{10} = (1 - p_0)/2 \hspace{0.05cm},\hspace{0.3cm} p_{11} = (1 - p_0)/2$$
- $$\Rightarrow \hspace{0.3cm} H(XY) =p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ p_0} + 2 \cdot \frac{1-p_0}{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{ 1- p_0} = p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ p_0} + (1-p_0) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ 1- p_0} + (1-p_0) \cdot {\rm log}_2 \hspace{0.1cm} (2)$$
- $$\Rightarrow \hspace{0.3cm}H(XY) =H_{\rm bin}(p_0) + 1 - p_0 \hspace{0.05cm}.$$
Das numerische Ergebnis für $p_0 = 0.4$ lautet somit:
- $$H(XY) = H_{\rm bin}(0.4) + 0.6 = 0.971 + 0.6 \hspace{0.15cm} \underline {=1.571\,{\rm bit}} \hspace{0.05cm}.$$
(4) Eine (mögliche) Gleichung zur Berechnung der Transinformation lautet:
- $$ I(X;Y) = H(X) + H(Y)- H(XY)\hspace{0.05cm}$$
Daraus erhält man mit den Ergebnissen der ersten drei Teilaufgaben:
- $$I(X;Y) = H_{\rm bin}(p_0) + H_{\rm bin}(\frac{1+p_0}{2}) - H_{\rm bin}(p_0) -1 + p_0 = H_{\rm bin}(\frac{1+p_0}{2}) -1 + p_0.$$
- $$ \Rightarrow \hspace{0.3cm} p_0 = 0.4 {\rm :}\hspace{0.5cm} I(X;Y) = H_{\rm bin}(0.7) - 0.6 = 0.881 - 0.6 \hspace{0.15cm} \underline {=0.281\,{\rm bit}}\hspace{0.05cm}.$$
(5) Die Kanalkapazität $C$ ist die Transinformation $I(X; Y)$ bei bestmöglichen Wahrscheinlichkeiten $p_0$ und $p_1$ der Quellensymbole.
- Nach Differentiation erhält man die Bestimmungsgleichung:
- $$\frac{\rm d}{{\rm d}p_0} \hspace{0.1cm} I(X;Y) = \frac{\rm d}{{\rm d}p_0} \hspace{0.1cm} H_{\rm bin}(\frac{1+p_0}{2}) +1 \stackrel{!}{=} 0 \hspace{0.05cm}.$$
- Mit dem Differentialquotienten der binären Entropiefunktion
- $$ \frac{\rm d}{{\rm d}p} \hspace{0.1cm} H_{\rm bin}(p) = {\rm log}_2 \hspace{0.1cm} \frac{1-p}{ p} \hspace{0.05cm},$$
und entsprechendes Nachdifferenzieren erhält man:
- $${1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{(1-p_0)/2}{1- (1-p_0)/2} +1 \stackrel{!}{=} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{(1-p_0)/2}{(1+p_0)/2} +1 \stackrel{!}{=} 0$$
- $$ \Rightarrow \hspace{0.3cm} {\rm log}_2 \hspace{0.1cm} \frac{1+p_0}{1-p_0} \stackrel{!}{=} 2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{1+p_0}{1-p_0} \stackrel{!}{=} 4 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_0 \hspace{0.15cm} \underline {=0.6}\hspace{0.05cm}.$$
(6) Für die Kanalkapazität gilt dementsprechend:
- $$C = I(X;Y) \big |_{p_0 \hspace{0.05cm}=\hspace{0.05cm} 0.6} = H_{\rm bin}(0.8) - 0.4 = 0.722 -0.4 \hspace{0.15cm} \underline {=0.322\,{\rm bit}}\hspace{0.05cm}.$$
In der Aufgabe A3.14 wird dieses Ergebnis im Vergleich zum BSC–Kanalmodell interpretiert.
(7) Für die Äquivokation gilt:
- $$ H(X \hspace{-0.1cm}\mid \hspace{-0.1cm}Y) = H(X) - I(X;Y) = 0.971 -0.322 \hspace{0.15cm} \underline {=0.649\,{\rm bit}}\hspace{0.05cm}.$$
- Wegen $H_{\rm bin}(0.4) = H_{\rm bin}(0.6)$ ergibt sich die gleiche Quellenentropie $H(X)$ wie in Teilaufgabe (1).
- Die Sinkenentropie muss neu berechnet werden.
- Mit $p_0 = 0.6$ erhält man $H(Y) = H_{\rm bin}(0.8) = 0.722\ \rm bit$, und damit ergibt sich für die Irrelevanz:
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(Y) - I(X;Y) = 0.722 -0.322 \hspace{0.15cm} \underline {=0.400\,{\rm bit}}\hspace{0.05cm}.$$