Aufgaben:Aufgabe 3.15: Data Processing Theorem: Unterschied zwischen den Versionen
Zeile 105: | Zeile 105: | ||
:$$\varepsilon = 0.5 + p \cdot (1-1) = 0.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(Y;Z) = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Z) = 0 \hspace{0.05cm}.$$ | :$$\varepsilon = 0.5 + p \cdot (1-1) = 0.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(Y;Z) = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Z) = 0 \hspace{0.05cm}.$$ | ||
*Auch für $p < 0.5$ und $q > 0.5$ wird das Data Processing Theorem nicht verletzt, was hier nur an einem Beispiel gezeigt werden soll: | *Auch für $p < 0.5$ und $q > 0.5$ wird das Data Processing Theorem nicht verletzt, was hier nur an einem Beispiel gezeigt werden soll: | ||
− | + | ::Mit $p = 0.1$ und $q = 0.8$ erhält man das gleiche Ergebnis wie in Teilaufgabe '''(4)''': | |
− | :$$\varepsilon = 0.1 + 0.8 - 2\cdot 0.1 \cdot 0.8 = 0.74 \hspace{0.3cm} | + | ::$$\varepsilon = 0.1 + 0.8 - 2\cdot 0.1 \cdot 0.8 = 0.74 \hspace{0.3cm} |
\Rightarrow \hspace{0.3cm} I(X;Z) = 1 - H_{\rm bin}(0.74) = 1 - H_{\rm bin}(0.26) =0.173 \,{\rm (bit)} \hspace{0.05cm}.$$ | \Rightarrow \hspace{0.3cm} I(X;Z) = 1 - H_{\rm bin}(0.74) = 1 - H_{\rm bin}(0.26) =0.173 \,{\rm (bit)} \hspace{0.05cm}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 7. Februar 2020, 14:56 Uhr
Wir betrachten die folgende Datenverarbeitungskette:
- Binäre Eingangsdaten $X$ werden durch den Prozessor $1$ (obere Hälfte in der Grafik) verarbeitet, der durch bedingte Wahrscheinlichkeiten ⇒ $P_{Y\hspace{0.03cm}|\hspace{0.03cm}X}(\cdot)$ beschreibbar ist. Dessen Ausgangsgröße ist $Y$.
- Ein zweiter Prozessor mit der Zufallsgröße $Y$ am Eingang und der Zufallsgröße $Z$ am Ausgang ist durch $P_{Z\hspace{0.03cm}|\hspace{0.03cm}Y}(\cdot)$ gegeben (untere Hälfte in der Grafik). $Z$ hängt allein von $Y$ ab (deterministisch oder stochastisch) und ist unabhängig von $X$:
- $$P_{Z\hspace{0.05cm}|\hspace{0.03cm} XY\hspace{-0.03cm}}(z\hspace{0.03cm}|\hspace{0.03cm} x, y) =P_{Z\hspace{0.05cm}|\hspace{0.03cm} Y\hspace{-0.03cm}}(z\hspace{0.03cm}|\hspace{0.03cm} y) \hspace{0.05cm}.$$
Für diese Beschreibung wurde folgende Nomenklatur benutzt:
- $$x \in X = \{0, 1\}\hspace{0.02cm},\hspace{0.3cm} y \in Y = \{0,1\}\hspace{0.02cm},\hspace{0.3cm} z \in Z = \{0, 1\}\hspace{0.02cm}.$$
Die Verbund–Wahrscheinlichkeitsfunktion (englisch: Joint Probability Mass Function) lautet:
- $$P_{XYZ}(x, y, z) = P_{X}(x) \cdot P_{Y\hspace{0.05cm}|\hspace{0.03cm} X\hspace{-0.03cm}}(y\hspace{0.03cm}|\hspace{0.03cm} x)\cdot P_{Z\hspace{0.05cm}|\hspace{0.03cm} Y\hspace{-0.03cm}}(z\hspace{0.03cm}|\hspace{0.03cm} y) \hspace{0.05cm}.$$
Das bedeutet auch:
$X → Y → Z$ bilden eine Markovkette. Für eine solche gilt das Data Processing Theorem mit folgender Konsequenz:
- $$I(X;Z) \le I(X;Y ) \hspace{0.05cm}, $$
- $$I(X;Z) \le I(Y;Z ) \hspace{0.05cm}.$$
Das Theorem besagt somit:
- Man kann durch Manipulation (Processing) der Daten $Y$ keine zusätzliche Information über den Eingang $X$ gewinnen.
- Datenverarbeitung (durch den Prozessor $1$) dient nur dem Zweck, die in $X$ enthaltene Information besser sichtbar zu machen.
Hinweise:
- Die Aufgabe gehört zum Kapitel Anwendung auf die Digitalsignalübertragung.
- Bezug genommen wird auch auf die Seite Kettenregel der Transinformation im vorherigen Kapitel.
Fragebogen
Musterlösung
- Beide Prozessoren beschreiben streng symmetrische Kanäle ⇒ sowohl gleichmäßig dispersiv als auch gleichmäßig fokussierend.
- Für einen solchen Binärkanal gilt mit $Y = \{0, 1\} \ ⇒ \ |Y| = 2$:
- $$I(X;Y) = 1 + \sum_{y \hspace{0.05cm}\in\hspace{0.05cm} Y} \hspace{0.1cm} P_{Y\hspace{0.03cm}|\hspace{0.03cm} X}(y\hspace{0.03cm}|\hspace{0.03cm}x) \cdot {\rm log}_2 \hspace{0.1cm}P_{\hspace{0.01cm}Y \hspace{0.03cm}|\hspace{0.03cm} X}(y\hspace{0.03cm}|\hspace{0.03cm}x) \hspace{0.05cm}.$$
- Hierbei ist es völlig egal, ob man von $X = 0$ oder von $X = 1$ ausgeht.
- Für $X = 0$ erhält man mit $P_{Y\hspace{0.03cm}|\hspace{0.03cm}X}(Y = 1\hspace{0.03cm}|\hspace{0.03cm}X = 0) = p$ und $P_{Y\hspace{0.03cm}|\hspace{0.03cm}X}(Y = 0\hspace{0.03cm}|\hspace{0.03cm}X = 0) = 1 – p\hspace{0.05cm}$:
- $$ I(X;Y) = 1 + p \cdot {\rm log}_2 \hspace{0.1cm} (p) + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} (1-p) = 1 - H_{\rm bin}(p)\hspace{0.05cm}, \hspace{1.0cm}H_{\rm bin}(p)= p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p}+ (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p}\hspace{0.05cm}.$$
- Das Ergebnis gilt allerdings nur für $P_X(X) = (0.5, \ 0.5)$ ⇒ maximale Transinformation ⇒ Kanalkapazität.
- Andernfalls ist $I(X; Y)$ kleiner. Beispielsweise gilt für $P_X(X) = (1, \ 0)$: $H(X) = 0$ ⇒ $I(X; Y) = 0.$
- Die binäre Entropiefunktion ist zwar konkav, aber diese Eigenschaft wurde bei der Herleitung nicht benutzt ⇒ Antwort 2 ist falsch.
(2) Für den Prozessor $1$ ergibt sich mit $p = 0.1\hspace{0.05cm}$:
- $$ I(X;Y) = 1 - H_{\rm bin}(0.1) = 1 - 0.469 \hspace{0.15cm} \underline {=0.531 \,{\rm (bit)}} \hspace{0.05cm}.$$
(3) Entsprechend gilt für den zweiten Prozessor mit $q = 0.2\hspace{0.05cm}$:
- $$I(Y;Z) = 1 - H_{\rm bin}(0.2) = 1 - 0.722 \hspace{0.15cm} \underline {=0.278 \,{\rm (bit)}} \hspace{0.05cm}.$$
(4) Die Wahrscheinlichkeit für $Z = 0$ unter der Bedingung $X = 0$ ergibt sich über zwei Wege zu
- $$P(\hspace{0.01cm}Z\hspace{-0.05cm} = 0\hspace{0.03cm} | \hspace{0.03cm} X\hspace{-0.05cm} = \hspace{-0.05cm}0) = (1-p) \cdot (1-q) + p \cdot q = 1 - p - q + 2pq \stackrel{!}{=} 1 - \varepsilon \hspace{0.05cm}.$$
- Das Gesamtsystem hat dann die genau gleiche BSC–Struktur wie die Prozessoren $1$ und $2$, aber nun mit der Verfälschungswahrscheinlichkeit $\varepsilon = p + q - 2pq \hspace{0.05cm}.$
- Für $p = 0.1$ und $q = 0.2$ erhält man:
- $$ \varepsilon = 0.1 + 0.2 - 2\cdot 0.1 \cdot 0.2 = 0.26 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Z) = 1 - H_{\rm bin}(0.26) = 1 - 0.827 \hspace{0.15cm} \underline {=0.173 \,{\rm (bit)}} \hspace{0.05cm}.$$
(5) Die Antwort ist natürlich JA, da beim Data Processing Theorem genau von den hier gegebenen Voraussetzungen ausgegangen wird.
Wir wollen aber zusätzlich einige numerische Ergebnisse auswerten:
- Gilt $0 ≤ p < 0.5$ und $0 ≤ q < 0.5$, so erhält man:
- $$\varepsilon = p + q \cdot (1-2p) > p \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Z) < I(X;Y) \hspace{0.05cm},$$
- $$\varepsilon = q + p \cdot (1-2q) > q \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Z) < I(Y;Z) \hspace{0.05cm}.$$
- Für $p = 0.5$ gilt unabhängig von $q$, da $I(X; Z)$ nicht größer sein kann als $I(X; Y)$:
- $$\varepsilon = 0.5 + q \cdot (1-1) = 0.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Y) = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Z) = 0 \hspace{0.05cm}.$$
- Ebenso erhält man mit $q = 0.5$ unabhängig von $p$:
- $$\varepsilon = 0.5 + p \cdot (1-1) = 0.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(Y;Z) = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} I(X;Z) = 0 \hspace{0.05cm}.$$
- Auch für $p < 0.5$ und $q > 0.5$ wird das Data Processing Theorem nicht verletzt, was hier nur an einem Beispiel gezeigt werden soll:
- Mit $p = 0.1$ und $q = 0.8$ erhält man das gleiche Ergebnis wie in Teilaufgabe (4):
- $$\varepsilon = 0.1 + 0.8 - 2\cdot 0.1 \cdot 0.8 = 0.74 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} I(X;Z) = 1 - H_{\rm bin}(0.74) = 1 - H_{\rm bin}(0.26) =0.173 \,{\rm (bit)} \hspace{0.05cm}.$$