Applets:Korrelation und Regressionsgerade: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 175: Zeile 175:
 
'''(3)'''  Es gelten zunächst weiter die Einstellungen von  '''(2)'''.  Wie ändern sich die Ergebnisse nach Variation des Parameters  $p_1$  im erlaubten Bereich  $(0\le p_1 \le 0.5)$?}}
 
'''(3)'''  Es gelten zunächst weiter die Einstellungen von  '''(2)'''.  Wie ändern sich die Ergebnisse nach Variation des Parameters  $p_1$  im erlaubten Bereich  $(0\le p_1 \le 0.5)$?}}
  
::* Die blaue Regressionsgerade verläuft weiter unter dem Winkel  $ \theta_{X \to Y}= 45^\circ$.  Das heißt:  es gilt hier  $\mu_{XY} =\sigma_Y^2$, und zwar unabhängig von   $p_1$.
+
::*&nbsp;Die blaue Regressionsgerade verläuft weiter unter dem Winkel&nbsp; $ \theta_{X \to Y}= 45^\circ$.&nbsp; Das heißt:&nbsp; es gilt hier&nbsp; $\mu_{XY} =\sigma_Y^2$, und zwar unabhängig von&nbsp; $p_1 < 0.5$.
 +
::*&nbsp;Im Grenzfall&nbsp; $p_1 = 0.5$&nbsp; ist wegen&nbsp; $\sigma_Y =0$&nbsp; die blaue Regressionsgerade undefiniert.&nbsp; Es handelt sich nurmehr um eine 1D&ndash;Zufallsgröße&nbsp; $X$.
 
::*&nbsp;Mit&nbsp; $p_1=0$&nbsp; sind nur die äußeren Punkte&nbsp; $3$&nbsp; und&nbsp; $4$&nbsp; wirksam &nbsp; &rArr; &nbsp; $ \theta_{Y \to X}= \theta_{X \to Y}= 45^\circ$,&nbsp; mit&nbsp; $p_1=0.5$&nbsp; nur die inneren Punkte&nbsp; $1$&nbsp; und&nbsp; $2$&nbsp; &rArr; &nbsp; $ \theta_{Y \to X}= 0^\circ$.
 
::*&nbsp;Mit&nbsp; $p_1=0$&nbsp; sind nur die äußeren Punkte&nbsp; $3$&nbsp; und&nbsp; $4$&nbsp; wirksam &nbsp; &rArr; &nbsp; $ \theta_{Y \to X}= \theta_{X \to Y}= 45^\circ$,&nbsp; mit&nbsp; $p_1=0.5$&nbsp; nur die inneren Punkte&nbsp; $1$&nbsp; und&nbsp; $2$&nbsp; &rArr; &nbsp; $ \theta_{Y \to X}= 0^\circ$.
 
::*&nbsp;Dazwischen wird die rote Regressionsgerade kontinuierlich flacher.&nbsp; Sind alle Punkte gleichwahrscheinlich&nbsp; $(p_1=0.25)$, dann ist&nbsp; $\theta_{Y \to X}\approx 38.7^\circ$.
 
::*&nbsp;Dazwischen wird die rote Regressionsgerade kontinuierlich flacher.&nbsp; Sind alle Punkte gleichwahrscheinlich&nbsp; $(p_1=0.25)$, dann ist&nbsp; $\theta_{Y \to X}\approx 38.7^\circ$.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)'''&nbsp; Setzen Sie '''Blau''': Binomialverteilung $(I=15, p=0.3)$ und '''Rot''': Poissonverteilung $(\lambda=4.5)$.
+
'''(4)'''&nbsp; Nun gelte&nbsp; $x_1 = 0,\ y_1 = 0.5,\ p_1 = 0.3$.&nbsp; Variieren Sie&nbsp; $p_1$&nbsp; im Bereich&nbsp; $0\le p_1 < 0.5$&nbsp; und interpretieren Sie die Ergebnisse.&nbsp; $(p_1 = 0.5)$&nbsp; sollte man ausschließen.}}
:Welche Unterschiede ergeben sich  zwischen beiden Verteilungen hinsichtlich Mittelwert $m_1$ und Varianz $\sigma^2$?}}
 
 
 
 
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Beide Verteilungern haben gleichen Mittelwert:}\hspace{0.2cm}m_\text{1, Blau}  = I \cdot p\ = 15 \cdot 0.3\hspace{0.15cm}\underline{ = 4.5 =} \  m_\text{1, Rot} = \lambda$;
 
  
$\hspace{1.85cm} \text{Binomialverteilung: }\hspace{0.2cm} \sigma_\text{Blau}^2 = m_\text{1, Blau} \cdot (1-p)\hspace{0.15cm}\underline { = 3.15} \le \text{Poissonverteilung: }\hspace{0.2cm} \sigma_\text{Rot}^2 = \lambda\hspace{0.15cm}\underline { = 4.5}$;
+
::*&nbsp;Wegen&nbsp; $\sigma_X \le \sigma_Y$&nbsp; liegt weiterhin die blaue Gerade nie unterhalb der roten, die nun für alle&nbsp; $p_1 \ne 0.5$&nbsp; die Winkelhalbierende ist &nbsp; &rArr; &nbsp; $ \theta_{Y \to X}\approx 45^\circ$.
 +
::*&nbsp;Der Winkel der blauen Regressionsgerade wächst von&nbsp; $ \theta_{X \to Y}= 45^\circ \ (p_1 = 0)$&nbsp; bis&nbsp; $ \theta_{X \to Y} \to 45^\circ \ (p_1 \to 0.5)$&nbsp; kontinuierlich an.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)'''&nbsp; Es gelten die Einstellungen von '''(4)'''. Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(z  \gt 10)$ und ${\rm Pr}(z \gt 15)$?}}
+
'''(5)'''&nbsp; Beginnen Sie mit&nbsp; $x_1 = 0.8,\ y_1 = -0.8,\ p_1 = 0.25$&nbsp; vergrößern Sie&nbsp; $y_1$&nbsp; bis zum Endwert&nbsp; $y_1 = +0.8$.&nbsp; Interpretieren Sie die Ergebnisse.}}
  
 
+
::*&nbsp;Für&nbsp; $y_1 =-0.8$&nbsp; ist&nbsp; $ \theta_{X \to Y}= 77.6^\circ$&nbsp; und&nbsp; $ \theta_{Y \to X}= 12.4^\circ$.&nbsp; Mit steigendem&nbsp; $y_1$&nbsp; verläuft die blaue Gerade&nbsp; $ R_{X \to Y}$&nbsp; flacher und die rote &nbsp; $ (R_{Y \to X})$&nbsp; steiler.
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomial: }\hspace{0.2cm} {\rm Pr}(z  \gt 10) = 1 - {\rm Pr}(z  \le 10) = 1 - 0.9993 = 0.0007;\hspace{0.3cm} {\rm Pr}(z \gt 15) = 0 \ {\rm  (exakt)}$.
+
::*&nbsp;Im Endpunkt&nbsp; $(y_1 = +0.8)$&nbsp; verlaufen die beiden Regressionsgeraden deckungsgleich unter dem Winkel&nbsp; $ \theta_{X \to Y}= \theta_{Y \to X}= 45^\circ$.
 
 
$\hspace{1.85cm}\text{Poisson: }\hspace{0.2cm} {\rm Pr}(z  \gt 10) = 1 - 0.9933 = 0.0067;\hspace{0.3cm}{\rm Pr}(z \gt 15) \gt  0 \ ( \approx 0)$
 
 
 
$\hspace{1.85cm} \text{Näherung: }\hspace{0.2cm}{\rm Pr}(z \gt 15) \ge {\rm Pr}(z = 16) = \lambda^{16}/{16!}\approx 2 \cdot 10^{-22}$.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(6)'''&nbsp; Es gelten weiter die Einstellungen von '''(4)'''. Mit welchen Parametern ergeben sich symmetrische Verteilungen um $m_1$?}}
+
'''(6)'''&nbsp; Abschließend gelte&nbsp; $x_1 = +1,\ y_1 = -1$.&nbsp; Variieren Sie&nbsp; $p_1$&nbsp; im gesamten zulässigen Bereich&nbsp; $0\le p_1 \le 0.5$.&nbsp; Wann sind die beiden Zufallsgrößen unkorreliert?}}
 
 
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomialverung mit }p = 0.5\text{}p_\mu =  {\rm Pr}(z  = \mu)\text{ symmetrisch um } m_1 = I/2 = 7.5 \ ⇒  \ p_μ = p_{I–μ}\ ⇒  \ p_8 = p_7, \ p_9 = p_6,  \text{usw.}$  
+
::*&nbsp;Für&nbsp; $p_1 = 0$&nbsp; gilt&nbsp; $ \theta_{X \to Y}=\theta_{Y \to X}= 45^\circ.$&nbsp; Anschließend dreht die blaue Gerade entgegen dem Uhrzeigersinn und die rote Gerade im Uhrzeigersinn.
 +
::*&nbsp;Für&nbsp; $p_1 = 0.25$&nbsp; sind die Winkel&nbsp; $ \theta_{X \to Y}=90^\circ, \ \theta_{Y \to X}= 0^\circ.$&nbsp; Diese Momentaufnahme trifft genau den Fall unkorrelierter Zufallsgrößen &nbsp; &rArr; &nbsp; $\mu_{XY}=0$.
 +
::*&nbsp;Anschließend drehen beide Geraden weiter in gleicher Richtung.&nbsp; Für&nbsp; $p_1 = 0.5$&nbsp; gilt schließlich:&nbsp; $ \theta_{X \to Y}=135^\circ= -45^\circ, \ \theta_{Y \to X}= -45^\circ.$
  
$\hspace{1.85cm}\text{Die Poissonverteilung wird dagegen nie symmetrisch, da sie sich bis ins Unendliche erstreckt!}$
 
  
 
==Zur Handhabung des Applets==
 
==Zur Handhabung des Applets==

Version vom 5. März 2020, 18:03 Uhr

Applet in neuem Tab öffnen

Programmbeschreibung



Theoretischer Hintergrund


Erwartungswerte von 2D–Zufallsgrößen und Korrelationskoeffizient

Wir betrachten eine zweidimensionale  $\rm (2D)$–Zufallsgröße  $(X,\ Y)$  mit der Wahrscheinlichkeitsdichtefunktion  $\rm (WDF)$  $f_{XY}(x, y)$, wobei zwischen den Einzelkomponenten  $X$  und  $Y$  statistische Abhängigkeiten bestehen.  Ein Sonderfall ist die Korrelation.

$\text{Definition:}$  Unter  Korrelation  versteht man eine lineare Abhängigkeit  zwischen den Einzelkomponenten  $X$  und  $Y$.

  • Korrelierte Zufallsgrößen sind damit stets auch statistisch abhängig.
  • Aber nicht jede statistische Abhängigkeit bedeutet gleichzeitig eine Korrelation.


Für das Folgende setzen wir voraus, dass  $X$  und  $Y$  mittelwertfrei seien   ⇒   ${\rm E}\big [ X \big ] = {\rm E}\big [ Y \big ]=0$.  Zur Beschreibung der Korrelation genügen dann folgende Erwartungswerte:

  • die  Varianzen  in  $X$–  bzw. in  $Y$–Richtung:
$$\sigma_X^2= {\rm E}\big [ X^2 \big ] = \int_{-\infty}^{+\infty}\hspace{0.2cm}x^2 \cdot f_{X}(x) \, {\rm d}x\hspace{0.05cm},\hspace{0.5cm}\sigma_Y^2= {\rm E}\big [Y^2 \big ] = \int_{-\infty}^{+\infty}\hspace{0.2cm}y^2 \cdot f_{Y}(y) \, {\rm d}y\hspace{0.05cm};$$
  • die  Kovarianz  zwischen den Einzelkomponenten  $X$  und  $Y$:
$$\mu_{XY}= {\rm E}\big [ X \cdot Y \big ] = \int_{-\infty}^{+\infty}\hspace{0.2cm}\int_{-\infty}^{+\infty} x\ \cdot y \cdot f_{XY}(x,y) \, {\rm d}x\, {\rm d}y\hspace{0.05cm}.$$

Bei statististischer Unabhängigkeit der beiden Komponenten  $X$  und  $Y$  ist die Kovarianz  $\mu_{XY} \equiv 0$. 

  • Das Ergebnis  $\mu_{XY} = 0$  ist auch bei statistisch abhängigen Komponenten  $X$  und  $Y$  möglich, nämlich dann, wenn diese unkorreliert, also  linear unabhängig  sind.
  • Die statistische Abhängigkeit ist dann nicht von erster, sondern von höherer Ordnung, zum Beispiel entsprechend der Gleichung  $Y=X^2.$


Man spricht dann von  vollständiger Korrelation, wenn die (deterministische) Abhängigkeit zwischen  $X$  und  $Y$  durch die Gleichung  $Y = K · X$  ausgedrückt wird.

Dann ergibt sich für die Kovarianz:

  • $\mu_{XY} = σ_X · σ_Y$  bei positivem Wert von  $K$,
  • $\mu_{XY} = -σ_X · σ_Y$  bei negativem  $K$–Wert.


Deshalb verwendet man häufig als Beschreibungsgröße anstelle der Kovarianz den so genannten Korrelationskoeffizienten.

$\text{Definition:}$  Der  Korrelationskoeffizient  ist der Quotient aus der Kovarianz  $\mu_{XY}$  und dem Produkt der Effektivwerte  $σ_X$  und  $σ_Y$  der beiden Komponenten:

$$\rho_{XY}=\frac{\mu_{XY} } {\sigma_X \cdot \sigma_Y}.$$


Der Korrelationskoeffizient  $\rho_{XY}$  weist folgende Eigenschaften auf:

  • Aufgrund der Normierung gilt stets  $-1 \le ρ_{XY} ≤ +1$.
  • Sind die beiden Zufallsgrößen  $X$  und  $Y$  unkorreliert, so ist  $ρ_{XY} = 0$.
  • Bei strenger linearer Abhängigkeit zwischen  $X$  und  $Y$  ist  $ρ_{XY}= ±1$   ⇒   vollständige Korrelation.
  • Ein positiver Korrelationskoeffizient bedeutet, dass bei größerem  $X$–Wert im statistischen Mittel auch  $Y$  größer ist als bei kleinerem  $X$.
  • Dagegen drückt ein negativer Korrelationskoeffizient aus, dass  $Y$  mit steigendem  $X$  im Mittel kleiner wird.


2D-WDF  $f_{XY}(x, y)$  sowie die zugehörigen Randwahrscheinlichkeitsdichten  $f_{X}(x)$  und  $f_{Y}(y)$

$\text{Beispiel 1:}$  Die 2D–Zufallsgröße  $(X,\ Y)$  sei diskret und kann nur vier verschiedene Werte annehmen:

  • $(+0.5,\ 0)$  sowie $(-0.5,\ 0)$  jeweils mit der Wahrscheinlichkeit  $0.3$,
  • $(+1,\ +\hspace{-0.09cm}1)$  sowie $(-1,\ -\hspace{-0.09cm}1)$  jeweils mit der Wahrscheinlichkeit  $0.2$.


$\rm (A)$  Die Varianzen bzw. die Streuungen können aus   $f_{X}(x)$  und  $f_{Y}(y)$  berechnet werden:

$$\sigma_X^2 = 2 \cdot \big [0.2 \cdot 1^2 + 0.3 \cdot 0.5^2 \big] = 0.55\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\sigma_X = 0.7416,$$
$$\sigma_Y^2 = \big [0.2 \cdot (-1)^2 + 0.6 \cdot 0^2 +0.2 \cdot (+1)^2 \big] = 0.4\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\sigma_Y = 0.6325.$$

$\rm (B)$  Für die Kovarianz ergibt sich der folgende Erwartungswert:

$$\mu_{XY}= {\rm E}\big [ X \cdot Y \big ] = 2 \cdot \big [0.2 \cdot 1 \cdot 1 + 0.3 \cdot 0.5 \cdot 0 \big] = 0.4.$$

$\rm (C)$  Damit erhält man für den Korrelationskoeffizienten:

$$\rho_{XY}=\frac{\mu_{XY} } {\sigma_X \cdot \sigma_Y}=\frac{0.4 } {0.7416 \cdot 0.6325 }\approx 0.8528. $$


Regressionsgerade

Gaußsche 2D-WDF mit Korrelationsgerade  $K$

Ziel der linearen Regression ist es, einen einfachen (linearen) Zusammenhang zwischen zwei Zufallsgrößen  $X$  und  $Y$  zu anzugeben, deren $\text{2D-WDF}$  $f_{XY}(x, y)$  durch Punkte  $(x_1, y_1 )$  ...  $(x_N, y_N )$  in der  $(x,\ y)$–Ebene vorgegeben ist.  Die Skizze zeigt das Prinzip am Beispiel mittelwertfreier Größen: 

Gesucht ist die Gleichung der Geraden  $K$  ⇒   $y=c_{\rm opt} \cdot x$  mit der Eigenschaft, dass der mittlere quadratische (Euklidische) Abstand  $\rm (MQA)$  aller Punkte von dieser Geraden minimal ist. Man bezeichnet diese Gerade auch als  Korrelationsgerade. Diese kann als eine Art  „statistische Symmetrieachse“  interpretiert werden.

Bei einer großen Menge  $N$  empirischer Daten ist der mathematische Aufwand beträchtlich, den bestmöglichen Parameter  $C = c_{\rm opt}$  zu ermitteln. Der Aufwand wird deutlich reduziert, wenn man den Abstand nur in  $x$– oder in  $y$–Richtung definiert.

Im Sonderfall Gaußscher 2D-Zufallsgrößen wie in der Skizze verwendet ist die Korrelationsgerade  $K$  identisch mit der Ellipsenhauptachse bei Darstellung der 2D-WDF in Form von Höhenlinien.
Stimmt das?


$\text{(a)}\hspace{0.5cm} \text{Regressionsgerade }R_{Y \to X}$     (rote Gerade in der App)

Hier wird der  $y$–Wert auf den  $x$–Wert zurückgeführt, was in etwa einer der möglichen Bedeutungen „Zurückfallen” des Wortes „Regression” entspricht.

  • Geradengleichung,  Winkel  $\theta_{Y \to X}$  der Geraden  $R_{Y \to X}$  zur  $x$–Achse:
$$y=C_{Y \to X} \cdot x \ \ \ \text{mit} \ \ \ C_{Y \to X}=\frac{\sigma_Y}{\sigma_X}\cdot\rho_{XY}= \frac{\mu_{XY}}{\sigma_X^2},\hspace{0.6cm} \theta_{Y \to X}={\rm arctan}\ (C_{Y \to X}).$$
  • Kriterium:   Der mittlere Abstand aller Punkte  $(x_n, y_n )$  von der Regressionsgeraden $R_{Y \to X}$  in  $y$–Richtung ist minimal:
$${\rm MQA}_Y = {\rm E} \big [ y_n - C_{Y \to X} \cdot x_n\big ]^2 = \frac{\rm 1}{N} \cdot \sum_{n=\rm 1}^{N}\; \;\big [y_n - C_{Y \to X} \cdot x_n\big ]^{\rm 2}={\rm Minimum}.$$
Die zweite Gleichung gilt nur, wenn alle Punkte  $(x_n, y_n )$  der 2D–WDF gleichwahrscheinlich sind.


$\text{(b)}\hspace{0.5cm} \text{Regressionsgerade }R_{X \to Y}$     (blaue Gerade in der App)

Die Regression in Gegenrichtung  $($also von  $X$  auf  $Y)$  bedeutet dagegen, dass der $x$–Wert auf den $y$–Wert zurückgeführt wird.  Für  ${\rm MQA}_Y$  ergibt sich der minimale Wert.

  • Geradengleichung,  Winkel  $\theta_{X \to Y}$  der Geraden  $R_{X \to Y}$  zur   $x$–Achse:
$$y=C_{X \to Y} \cdot x \ \ \text{mit} \ \ C_{X \to Y}=\frac{\sigma_X}{\sigma_Y}\cdot\rho_{XY}= \frac{\mu_{XY}}{\sigma_Y^2},\hspace{0.6cm} \theta_{X \to Y}={\rm arctan}\ (C_{X \to Y}).$$
  • Kriterium:   Der mittlere Abstand aller Punkte  $(x_n, y_n )$  von der Regressionsgeraden  $R_{X \to Y}$  in  $x$–Richtung ist minimal:
$${\rm MQA}_X = {\rm E} \big [ x_n - y_n/C_{x \to y}\big ]^2 = \frac{\rm 1}{N} \cdot \sum_{n=\rm 1}^{N}\; \;\big [x_n - y_n/C_{x \to y}\big ]^{\rm 2}={\rm Minimum}.$$
Die beiden Regressionsgeraden

$\text{Beispiel 2:}$  Es gelten die gleichen Voraussetzungen wie im  $\text{Beispiel 1}$  und es werden teilweise auch die dort gefundenen Ergebnisse verwendet.

In der oberen Grafik ist die Regressionsgerade  $R_{x \to y}$  als blaue Kurve eingezeichnet:

  • Hierfür ergibt sich  $C_{X \to Y}=\mu_{XY}/{\sigma_Y^2} = 1$  und dementsprechend  $ \theta_{X \to Y}={\rm arctan}\ (1) = 45^\circ.$
  • Für den mittleren Abstand aller vier Punkte  $(x_n, y_n )$  von der Regressionsgeraden $R_{X \to Y}$  in  $x$–Richtung erhält man unter Ausnutzung der Symmetrie (beachten Sie die eingezeichneten blauen Horizontalen):
$${\rm MQA}_X = {\rm E} \big [ x_n - y_n/C_{x \to y}\big ]^2 = 2 \cdot \big [ 0.2 \cdot \left [1 - 1/1\right ]^{\rm 2} +0.3 \cdot \left [0.5 - 0/1\right ]^{\rm 2}\big ]=0.15.$$
  • Jede Gerade mit einem anderen Winkel als  $45^\circ$  führt hier zu einem größeren  ${\rm MQA}_X$.


Betrachten wir nun die rote Regressionsgerade  $R_{Y \to X}$  in der unteren Grafik.

  • Hierfür ergibt sich  $C_{Y \to X}=\mu_{XY}/{\sigma_X^2} = 0.4/0.55\approx0.727$  und  $ \theta_{Y \to X}={\rm arctan}\ (0.727) \approx 36^\circ.$
  • Hier ist nun der mittlere Abstand der vier Punkte  $(x_n, y_n )$  von der Regressionsgeraden $R_{Y \to X}$  in  $y$–Richtung minimal (beachten Sie die eingezeichneten roten Vertikalen):
$${\rm MQA}_Y = {\rm E} \big [ y_n - C_{y \to x} \cdot x_n\big ]^2 = 2 \cdot \big [ 0.2 \cdot \left [1 - 0.727 \cdot 1\right ]^{\rm 2} +0.3 \cdot \left [0 - 0.727 \cdot 0.5 \right ]^{\rm 2}\big ]\approx 0.109.$$

Die im Text erwähnte „Korrelationsgerade” mit der Eigenschaft, dass der mittlere quadratische Euklidische Abstand  $\rm (MQA)$  aller Punkte von dieser Geraden minimal ist, wird sicher zwischen den beiden hier berechneten Regressionsgeraden liegen.

Testbereich

Bitte überprüfen

???
  • Hier habe ich als Test neben der roten und der blauen Geraden noch die grüne Gerade $H$ mit Winkel $\arctan(\rho) = \arctan(0.853)\approx 40^\circ$ eingezeichnet.
  • Sollte das die Korrelationsgerade $K$ sein, dann müsste der mittlere quadratische (Euklidische) Abstand  $\rm (MQA)$  aller Punkte von dieser Geraden minimal sein.
  • Müsste dann für diese Gerade ${\rm MQA}={\rm MQA}_X + {\rm MQA}_Y$ minimal sein?
  • Bitte für mehrere Parametersätze überprüfen. Ich hoffe, dass das nicht allgemein stimmt.


Bitte recherchieren. Das kann man mit dem Programm nicht überprüfen

Gaußsche 2D


  • Könnte das wenigstens bei Gaußschen 2D–Zufallsgrößen gelten
  • Durch die Tangenten sind die Regressionsgeraden bestimmt.
  • Im anderen LNTwww und im Carolin-Programm bezeichnen wir die schwarze Gerade als Ellipsenhauptache und die rote Gerade als Korrelationsgerade.
  • Wenn das stimmt, müsste ich das ändern. Die Änderungen im Programm selbst wären minimal.


Der Sonderfall Gaußscher 2D–Zufallsgrößen

Fehlt noch.

Versuchsdurchführung

Eventuell noch überarbeiten

Exercises binomial fertig.png
  • Wählen Sie zunächst die Nummer 1 ... 6 der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Hide solution”.
  • Aufgabenstellung und Lösung in Englisch.


Die Nummer 0 entspricht einem „Reset”:

  • Gleiche Einstellung wie beim Programmstart.
  • Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.

Ende Überarbeitung Voreinstellung für Nummer 0 wie bei den Beispielen vorne

In den folgenden Aufgabenbeschreibungen werden folgende Kurzbezeichnungen verwendet:

  • Rot:     Regressionsgerade  $R_{Y \to X}$  (im Applet rot gezeichnet),
  • Blau:   Regressionsgerade  $R_{X \to Y}$  (im Applet blau gezeichnet).


(1)  Mit welcher Parametereinstellung sind die beiden Regressionsgerade  $R_{Y \to X}$  und  $R_{X \to Y}$  deckungsgleich?

  •  Es ist offensichtlich, dass gleiche Regressionsgerade nur möglich sind, wenn diese unter dem Winkel  $45^\circ$  verlaufen   ⇒   „Winkelhalbierende”.
  •  Da die fest vorgegebenen Punkte  $3$  und  $4$  auf der Winkelhalbierenden liegen, muss dies auch für die Punkte  $1$  und  $2$  gelten   ⇒   $y_1 = x_1$.
  •  Dies gilt für alle Parametereinstellungen  $y_1 = x_1$  und auch für alle  $p_1$  im erlaubten Bereich von   $0$  bis  $0.5$.

(2)  Nun gelte $x_1 = 0.5,\ y_1 = 0,\ p_1 = 0.3$  Interpretieren Sie die Ergebnisse.  Aktivieren Sie hierzu die Hilfsgerade.

  •  Diese Einstellung stimmt mit den Voraussetzungen von  $\text{Beispiel 1}$  und  $\text{Beispiel 2}$  überein.  Insbesondere gilt  $ \theta_{X \to Y}= 45^\circ.$  und  $ \theta_{Y \to X}\approx 36^\circ$.
  •  Durch Variation des Winkels  $ \theta_{\rm H}$  erkennt man, dass tatsächlich für  $ \theta_{\rm H}= 45^\circ$  die Kenngröße  ${\rm MQA}_X =0.15$  den kleinsmöglichen Wert annimmt.
  •  Ebenso ergibt sich der kleinsmöglicher Abstand  ${\rm MQA}_Y =0.109$  in  $y$–Richtung für  $ \theta_{\rm H}= 36^\circ$, also entsprechend der Regressionsgeraden    $R_{y \to x}$.

(3)  Es gelten zunächst weiter die Einstellungen von  (2).  Wie ändern sich die Ergebnisse nach Variation des Parameters  $p_1$  im erlaubten Bereich  $(0\le p_1 \le 0.5)$?

  •  Die blaue Regressionsgerade verläuft weiter unter dem Winkel  $ \theta_{X \to Y}= 45^\circ$.  Das heißt:  es gilt hier  $\mu_{XY} =\sigma_Y^2$, und zwar unabhängig von  $p_1 < 0.5$.
  •  Im Grenzfall  $p_1 = 0.5$  ist wegen  $\sigma_Y =0$  die blaue Regressionsgerade undefiniert.  Es handelt sich nurmehr um eine 1D–Zufallsgröße  $X$.
  •  Mit  $p_1=0$  sind nur die äußeren Punkte  $3$  und  $4$  wirksam   ⇒   $ \theta_{Y \to X}= \theta_{X \to Y}= 45^\circ$,  mit  $p_1=0.5$  nur die inneren Punkte  $1$  und  $2$  ⇒   $ \theta_{Y \to X}= 0^\circ$.
  •  Dazwischen wird die rote Regressionsgerade kontinuierlich flacher.  Sind alle Punkte gleichwahrscheinlich  $(p_1=0.25)$, dann ist  $\theta_{Y \to X}\approx 38.7^\circ$.

(4)  Nun gelte  $x_1 = 0,\ y_1 = 0.5,\ p_1 = 0.3$.  Variieren Sie  $p_1$  im Bereich  $0\le p_1 < 0.5$  und interpretieren Sie die Ergebnisse.  $(p_1 = 0.5)$  sollte man ausschließen.

  •  Wegen  $\sigma_X \le \sigma_Y$  liegt weiterhin die blaue Gerade nie unterhalb der roten, die nun für alle  $p_1 \ne 0.5$  die Winkelhalbierende ist   ⇒   $ \theta_{Y \to X}\approx 45^\circ$.
  •  Der Winkel der blauen Regressionsgerade wächst von  $ \theta_{X \to Y}= 45^\circ \ (p_1 = 0)$  bis  $ \theta_{X \to Y} \to 45^\circ \ (p_1 \to 0.5)$  kontinuierlich an.

(5)  Beginnen Sie mit  $x_1 = 0.8,\ y_1 = -0.8,\ p_1 = 0.25$  vergrößern Sie  $y_1$  bis zum Endwert  $y_1 = +0.8$.  Interpretieren Sie die Ergebnisse.

  •  Für  $y_1 =-0.8$  ist  $ \theta_{X \to Y}= 77.6^\circ$  und  $ \theta_{Y \to X}= 12.4^\circ$.  Mit steigendem  $y_1$  verläuft die blaue Gerade  $ R_{X \to Y}$  flacher und die rote   $ (R_{Y \to X})$  steiler.
  •  Im Endpunkt  $(y_1 = +0.8)$  verlaufen die beiden Regressionsgeraden deckungsgleich unter dem Winkel  $ \theta_{X \to Y}= \theta_{Y \to X}= 45^\circ$.

(6)  Abschließend gelte  $x_1 = +1,\ y_1 = -1$.  Variieren Sie  $p_1$  im gesamten zulässigen Bereich  $0\le p_1 \le 0.5$.  Wann sind die beiden Zufallsgrößen unkorreliert?

  •  Für  $p_1 = 0$  gilt  $ \theta_{X \to Y}=\theta_{Y \to X}= 45^\circ.$  Anschließend dreht die blaue Gerade entgegen dem Uhrzeigersinn und die rote Gerade im Uhrzeigersinn.
  •  Für  $p_1 = 0.25$  sind die Winkel  $ \theta_{X \to Y}=90^\circ, \ \theta_{Y \to X}= 0^\circ.$  Diese Momentaufnahme trifft genau den Fall unkorrelierter Zufallsgrößen   ⇒   $\mu_{XY}=0$.
  •  Anschließend drehen beide Geraden weiter in gleicher Richtung.  Für  $p_1 = 0.5$  gilt schließlich:  $ \theta_{X \to Y}=135^\circ= -45^\circ, \ \theta_{Y \to X}= -45^\circ.$


Zur Handhabung des Applets

Handhabung binomial.png

    (A)     Vorauswahl für blauen Parametersatz

    (B)     Parametereingabe $I$ und $p$ per Slider

    (C)     Vorauswahl für roten Parametersatz

    (D)     Parametereingabe $\lambda$ per Slider

    (E)     Graphische Darstellung der Verteilungen

    (F)     Momentenausgabe für blauen Parametersatz

    (G)     Momentenausgabe für roten Parametersatz

    (H)     Variation der grafischen Darstellung


$\hspace{1.5cm}$„$+$” (Vergrößern),

$\hspace{1.5cm}$ „$-$” (Verkleinern)

$\hspace{1.5cm}$ „$\rm o$” (Zurücksetzen)

$\hspace{1.5cm}$ „$\leftarrow$” (Verschieben nach links), usw.

    ( I )     Ausgabe von ${\rm Pr} (z = \mu)$ und ${\rm Pr} (z \le \mu)$

    (J)     Bereich für die Versuchsdurchführung

Andere Möglichkeiten zur Variation der grafischen Darstellung:

  • Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
  • Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.

Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2003 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
  • 2018 wurde das Programm von Jimmy He (Bachelorarbeit, Betreuer: Tasnád Kernetzky ) auf „HTML5” umgesetzt und neu gestaltet.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen