Aufgaben:Aufgabe 2.3Z: ZSB durch Nichtlinearität: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 79: Zeile 79:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Die Trägerfrequenz ist sinnvollerweise gleich der Mittenfrequenz des Bandpasses: $f_{\rm T}\hspace{0.15cm}\underline{ = 100\ \rm kHz}$.  
+
'''(1)'''  Die Trägerfrequenz ist sinnvollerweise gleich der Mittenfrequenz des Bandpasses:  $f_{\rm T}\hspace{0.15cm}\underline{ = 100\ \rm kHz}$.  
*Weicht  $f_{\rm T}$ um nicht mehr als $±1 \ \rm kHz$ davon ab, ergibt sich ebenfalls eine „ZSB–AM”.
+
*Weicht  $f_{\rm T}$  um nicht mehr als  $±1 \ \rm kHz$  davon ab, ergibt sich ebenfalls eine „ZSB–AM”.
  
  
'''(2)'''&nbsp; $s_1(t)$ beinhaltet nur den Träger $z(t)$ &nbsp; &rArr; &nbsp; <u>Antwort 1</u>. Das Quellensignal $q(t)$ wird durch den Bandpass entfernt.
 
  
 +
'''(2)'''&nbsp; $s_1(t)$&nbsp; beinhaltet nur den Träger&nbsp; $z(t)$ &nbsp; &rArr; &nbsp; <u>Antwort 1</u>. Das Quellensignal&nbsp; $q(t)$&nbsp; wird durch den Bandpass entfernt.
 +
 +
 +
 +
'''(3)'''&nbsp; Der quadratische Term&nbsp; $z^2(t)$&nbsp; besteht aus einem Gleichanteil&nbsp; $($bei&nbsp; $f = 0)$&nbsp; sowie einem Anteil bei&nbsp; $2f_{\rm T}$.
 +
*Auch alle Spektralanteile von&nbsp; $q^2(t)$&nbsp; liegen außerhalb des Bandpasses.
 +
*Richtig ist somit die <u>letzte Antwort</u>.
  
'''(3)'''&nbsp; Der quadratische Term $z^2(t)$ besteht aus einem Gleichanteil (bei $f = 0$) sowie einem Anteil bei $2f_{\rm T}$. Auch alle Spektralanteile von $q^2(t)$ liegen außerhalb des Bandpasses. Richtig ist somit die <u>letzte Antwort</u>.
 
  
  
 
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
 
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
*Der Term $\cos^3(ω_Tt)$ hat seinen größten Signalanteil bei $f = f_{\rm T}$.  
+
*Der Term&nbsp; $\cos^3(ω_Tt)$&nbsp; hat seinen größten Signalanteil bei&nbsp; $f = f_{\rm T}$.  
*Der dritte Lösungsvorschlag $(3 · c_3 · z(t) · q^2(t))$ liegt zwischen $100\ \rm  kHz ± 18 \ \rm  kHz $.  
+
*Der dritte Lösungsvorschlag&nbsp; $(3 · c_3 · z(t) · q^2(t))$&nbsp; liegt zwischen&nbsp; $100\ \rm  kHz ± 18 \ \rm  kHz $.  
*Teile davon – nämlich die Frequenzanteile zwischen $90\ \rm  kHz $ und $110 \ \rm  kHz$ – werden durch den Bandpass nicht entfernt und sind somit auch in $s(t)$ enthalten.  
+
*Teile davon – nämlich die Frequenzanteile zwischen&nbsp; $90\ \rm  kHz $ und $110 \ \rm  kHz$&nbsp; – werden durch den Bandpass nicht entfernt und sind somit auch in&nbsp; $s(t)$&nbsp; enthalten.  
  
  
[[Datei:P_ID993__Mod_Z_2_3_f.png|right|frame|Spektrum des erzeugten AM–Signals]]
+
 
 +
[[Datei:P_ID993__Mod_Z_2_3_f.png|right|frame|Erzeugtes AM–Spektrum]]
 
'''(5)'''&nbsp; Das Sendesignal besteht aus insgesamt fünf Frequenzen:
 
'''(5)'''&nbsp; Das Sendesignal besteht aus insgesamt fünf Frequenzen:
 
:$$s(t)  =  c_1 \cdot A_{\rm T} \cdot \cos(\omega_{\rm T} t)+ c_2 \cdot A_{\rm T} \cdot A_{\rm 1} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 1})t) + c_2 \cdot A_{\rm T} \cdot A_{\rm 2} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 2})t) \hspace{0.05cm}.$$
 
:$$s(t)  =  c_1 \cdot A_{\rm T} \cdot \cos(\omega_{\rm T} t)+ c_2 \cdot A_{\rm T} \cdot A_{\rm 1} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 1})t) + c_2 \cdot A_{\rm T} \cdot A_{\rm 2} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 2})t) \hspace{0.05cm}.$$
  
Beachten Sie hierbei, dass der zweite und dritte Term jeweils zwei Signalfrequenzen beinhaltet:  
+
*Beachten Sie hierbei, dass der zweite und dritte Term jeweils zwei Signalfrequenzen beinhaltet:  
*$\text{99 kHz}$ und $\text{101 kHz}$ bzw.  
+
**$\text{99 kHz}$&nbsp; und &nbsp;$\text{101 kHz}$ bzw.  
*$\text{91 kHz}$ und $\text{109 kHz}$.  
+
**$\text{91 kHz}$&nbsp; und&nbsp; $\text{109 kHz}$.  
  
  
Mit $A_{\rm T} = 4 \ \rm  V$, $A_1 = 1 V$, $A_9 = 2  \ \rm  V$, $c_1 = 1$ und $c_2 = 1/A_{\rm T} = \rm 0.25/V$ gilt auch:
+
*Mit&nbsp; $A_{\rm T} = 4 \ \rm  V$,&nbsp; $A_1 = 1 V$,&nbsp; $A_9 = 2  \ \rm  V$,&nbsp; $c_1 = 1$&nbsp; und&nbsp; $c_2 = 1/A_{\rm T} = \rm 0.25/V$&nbsp; gilt auch:
 
:$$s(t) = 4\,{\rm V} \cdot \cos(\omega_{\rm T} t) + 1\,{\rm V} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 1})t) + 2\,{\rm V}\cdot \cos((\omega_{\rm T} \pm \omega_{\rm 2})t) \hspace{0.05cm}.$$
 
:$$s(t) = 4\,{\rm V} \cdot \cos(\omega_{\rm T} t) + 1\,{\rm V} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 1})t) + 2\,{\rm V}\cdot \cos((\omega_{\rm T} \pm \omega_{\rm 2})t) \hspace{0.05cm}.$$
  
Daran erkennt man, dass für den  Modulationsgrad gilt:  
+
*Daran erkennt man, dass für den  Modulationsgrad gilt:  
 
:$$m =\frac{A_1 + A_9}{A_{\rm T}} = \rm \frac{1\ V + 2 \ V}{4 \ V}  \hspace{0.15cm}\underline{=0.75}.$$
 
:$$m =\frac{A_1 + A_9}{A_{\rm T}} = \rm \frac{1\ V + 2 \ V}{4 \ V}  \hspace{0.15cm}\underline{=0.75}.$$
  
  
'''(6)'''&nbsp; Die Grafik zeigt oben das Spektrum $S_+(f)$ – also nur positive Frequenzen – mit $c_3 = 0$. <br>Mit $c_3 ≠ 0$ fallen folgende zusätzliche Spektralanteile an:
+
 
 +
'''(6)'''&nbsp; Die Grafik zeigt oben das Spektrum&nbsp; $S_+(f)$&nbsp; – also nur positive Frequenzen – mit&nbsp; $c_3 = 0$.&nbsp;
 +
* Mit&nbsp; $c_3 ≠ 0$&nbsp; fallen folgende zusätzliche Spektralanteile an:
 
:$$c_3 \cdot z^3(t)= \frac{c_3 \cdot A_{\rm T}^3}{4} \cdot \left[ 3 \cdot \cos(\omega_{\rm T} t) + \cos(3\omega_{\rm T} t)\right] \hspace{0.05cm}.$$
 
:$$c_3 \cdot z^3(t)= \frac{c_3 \cdot A_{\rm T}^3}{4} \cdot \left[ 3 \cdot \cos(\omega_{\rm T} t) + \cos(3\omega_{\rm T} t)\right] \hspace{0.05cm}.$$
*Der erste Anteil fällt in den Durchlassbereich des Bandpasses. Das Diracgewicht bei $f_{\rm T} =$ 100 kHz wird dadurch von ursprünglich $8 \ \rm V$ auf $\text{8 V + 0.75 · 0.01/V}^2 · 4^3 \text{ V}^3 = 8.48 \ \rm V$ erhöht.
+
*Der erste Anteil fällt in den Durchlassbereich des Bandpasses.&nbsp; Das Diracgewicht bei&nbsp; $f_{\rm T} = 100\ \rm kHz$&nbsp; wird dadurch von ursprünglich&nbsp; $8 \ \rm V$&nbsp; auf&nbsp; $\text{8 V + 0.75 · 0.01/V}^2 · 4^3 \text{ V}^3 = 8.48 \ \rm V$&nbsp; erhöht.
*Weiterhin liefert der dritte Spektralanteil von Teilaufgabe '''(4)''' einen unerwünschten Beitrag zu $S_+(f)$. Dabei gilt:
+
 
 +
 
 +
*Weiterhin liefert der dritte Spektralanteil von Teilaufgabe&nbsp; '''(4)'''&nbsp; einen unerwünschten Beitrag zu&nbsp; $S_+(f)$.&nbsp; Dabei gilt:
 
:$$q^2(t)  =  \left[A_{\rm 1} \cdot \cos(\omega_{\rm 1} t)+A_{\rm 9} \cdot \cos(\omega_{\rm 9} t)\right]^2 = A_{\rm 1}^2 \cdot \cos^2(\omega_{\rm 1} t)+ A_{\rm 9}^2 \cdot \cos^2(\omega_{\rm 9}t) +  
 
:$$q^2(t)  =  \left[A_{\rm 1} \cdot \cos(\omega_{\rm 1} t)+A_{\rm 9} \cdot \cos(\omega_{\rm 9} t)\right]^2 = A_{\rm 1}^2 \cdot \cos^2(\omega_{\rm 1} t)+ A_{\rm 9}^2 \cdot \cos^2(\omega_{\rm 9}t) +  
 
   2 \cdot A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 1} t)\cdot \cos(\omega_{\rm 9} t)$$
 
   2 \cdot A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 1} t)\cdot \cos(\omega_{\rm 9} t)$$
 
:$$ \Rightarrow \hspace{0.2cm} q^2(t)  =  \frac{A_{\rm 1}^2}{2} +\frac{A_{\rm 1}^2}{2} \cdot \cos(\omega_{\rm 2} t)+ \frac{A_{\rm 9}^2}{2} + \frac{A_{\rm 9}^2}{2} \cdot \cos(\omega_{\rm 18} t) +  A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 8} t)+ A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 10} t).$$
 
:$$ \Rightarrow \hspace{0.2cm} q^2(t)  =  \frac{A_{\rm 1}^2}{2} +\frac{A_{\rm 1}^2}{2} \cdot \cos(\omega_{\rm 2} t)+ \frac{A_{\rm 9}^2}{2} + \frac{A_{\rm 9}^2}{2} \cdot \cos(\omega_{\rm 18} t) +  A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 8} t)+ A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 10} t).$$
Nach der Multiplikation mit $z(t)$ fallen alle diese Beiträge bis auf den vierten in den Bereich von $\text{90 kHz}$ bis $\text{110 kHz}$.  
+
*Nach der Multiplikation mit&nbsp; $z(t)$&nbsp; fallen alle diese Beiträge bis auf den vierten in den Bereich von&nbsp; $\text{90 kHz}$&nbsp; bis&nbsp; $\text{110 kHz}$.&nbsp; Das Gewicht bei&nbsp; $f_{\rm T} = 100\ \rm kHz$&nbsp;  wird um&nbsp; $3 · c_3 · A_{\rm T} · 0.5 (A_1^2 + A_9^2) = 0.6\ \rm  V$&nbsp; weiter erhöht und ist somit&nbsp; $9.08 \ \rm V$.  
  
Das Gewicht bei $f_{\rm T} = 100\ \rm kHz$  wird um $3 · c_3 · A_{\rm T} · 0.5 (A_1^2 + A_9^2) = 0.6\ \rm  V$ weiter erhöht und ist somit $9.08 \ \rm V$.
 
  
 
Weitere Anteile ergeben sich bei:
 
Weitere Anteile ergeben sich bei:
*$98 \ \rm kHz$ und $102 \ \rm kHz$ mit den Gewichten $c_3 · A_{\rm T}/2 · A_1^2/2 = 0.03\ \rm  V$,
+
*$98 \ \rm kHz$&nbsp; und&nbsp; $102 \ \rm kHz$&nbsp; mit den Gewichten&nbsp; $c_3 · A_{\rm T}/2 · A_1^2/2 = 0.03\ \rm  V$,
* $92 \ \rm kHz$ und $108 \ \rm kHz$ mit den Gewichten $3c_3 · A_{\rm T}/2 · A_1 · A_9 = 0.12\ \rm  V$,
+
* $92 \ \rm kHz$&nbsp; und&nbsp; $108 \ \rm kHz$&nbsp; mit den Gewichten&nbsp; $3c_3 · A_{\rm T}/2 · A_1 · A_9 = 0.12\ \rm  V$,
* $90 \ \rm kHz$ und $110 \ \rm kHz$ mit den Gewichten $3c_3 · A_{\rm T}/2 · A_1 · A_9 = 0.12\ \rm  V$.
+
* $90 \ \rm kHz$&nbsp; und&nbsp; $110 \ \rm kHz$&nbsp; mit den Gewichten&nbsp; $3c_3 · A_{\rm T}/2 · A_1 · A_9 = 0.12\ \rm  V$.
  
  
Die untere Grafik zeigt das Spektrum $S_+(f)$ unter Berücksichtigung der kubischen Anteile. Man erkennt, dass neue Frequenzen entstanden sind, was auf nichtlineare Verzerrungen hindeutet. Richtig sind somit die <u>Lösungsvorschläge 1 und 3</u>.
+
Die untereSkizze in obiger  Grafik zeigt das Spektrum&nbsp; $S_+(f)$&nbsp; unter Berücksichtigung der kubischen Anteile.&nbsp; Man erkennt, dass neue Frequenzen entstanden sind, was auf nichtlineare Verzerrungen hindeutet.&nbsp; Richtig sind somit die <u>Lösungsvorschläge 1 und 3</u>.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 6. März 2020, 17:20 Uhr

ZSB–AM durch Nichtlinearität

In dieser Aufgabe betrachten wir die Realisierung einer Zweiseitenband–Amplitudenmodulation mittels der nichtlinearen Kennlinie

$$y = g(x) = c_1 \cdot x + c_2 \cdot x^2+ c_3 \cdot x^3\hspace{0.05cm}$$
$$ \Rightarrow c_1 = 2,\hspace{0.2cm}c_2 = 0.25/{\rm V},\hspace{0.2cm}c_3 = 0 \hspace{0.1cm}{\rm bzw.}\hspace{0.1cm}c_3 = 0.01/{\rm V^2}\hspace{0.05cm}.$$

Am Eingang dieser Kennlinie liegt die Summe aus Trägersignal und Quellensignal an:

$$ x(t) = z(t) + q(t) = A_{\rm T} \cdot \cos(\omega_{\rm T} t)+ q(t),\hspace{0.2cm} A_{\rm T} = 4\,{\rm V}\hspace{0.05cm}.$$
  • Über das Quellensignal  $q(t)$  ist bekannt, dass es Spektralanteile zwischen  $1 \ \rm kHz$  und  $9 \ \rm kHz$  (einschließlich dieser Grenzen) beinhaltet.
  • Ab der Teilaufgabe  (5)  soll folgendes Quellensignal vorausgesetzt werden:
$$q(t) = A_{\rm 1} \cdot \cos(\omega_{\rm 1} t)+A_{\rm 9} \cdot \cos(\omega_{\rm 9} t) \hspace{0.05cm}.$$
  • Die Kreisfrequenzen seien  $ω_1 = 2 π · 1 \ \rm kHz$  und  $ω_9 = 2 π · 9\ \rm kHz$.  Die dazugehörigen Amplituden sind wie folgt gegeben:  $A_1 = 1\ \rm V$  und  $A_9 = 2\ \rm V$.


In den Fragen zu dieser Aufgabe werden folgende Abkürzungen verwendet:

$$ y(t) = y_1(t) + y_2(t)+y_3(t),$$
$$y_1(t) = c_1 \cdot [z(t) + q(t)],$$
$$ y_2(t) = c_2 \cdot[z(t) + q(t)]^2,$$
$$y_3(t) = c_3 \cdot [z(t) + q(t)]^3 \hspace{0.05cm}.$$

Die Sendesignale  $s(t)$  bzw.  $s_1(t)$,  $s_2(t)$  und  $s_3(t)$  ergeben sich daraus jeweils durch Bandbegrenzung auf den Bereich von  $90 \ \rm kHz$  bis  $110 \ \rm kHz$.





Hinweise:

  • Gegeben sind folgende trigonometrischen Umformungen:
$$ \cos^2(\alpha) = {1}/{2} \cdot \left[ 1 + \cos(2\alpha)\right] \hspace{0.05cm}, \hspace{0.5cm} \cos^3(\alpha) = {1}/{4} \cdot \left[ 3 \cdot \cos(\alpha) + \cos(3\alpha)\right] \hspace{0.05cm}.$$


Fragebogen

1

Wie sollte die Trägerfrequenz sinnvollerweise gewählt werden?

$f_{\rm T} \ = \ $

$\ \text{kHz}$

2

Welche Signalanteile beinhaltet  $s_1(t)$?

den Term  $c_1 \cdot z(t)$,
den Term  $c_1 \cdot q(t)$.

3

Welche Signalanteile beinhaltet  $s_2(t)$?

den Term  $c_2 · z^2(t)$,
den Term  $c_2 · q^2(t)$,
den Term  $2c_2 · z(t) · q(t)$.

4

Welche Signalanteile beinhaltet  $s_3(t)$  zumindest teilweise?

den Term  $c_3 · z^3(t)$,
den Term  $3 · c_3 · z^2(t) · q(t)$,
den Term  $3 · c_3 · z(t) · q^2(t)$,
den Term  $c_3 · q^3(t)$.

5

Berechnen Sie  $s(t)$, wenn  $c_3 = 0$  gilt und sich das Quellensignal  $q(t)$  aus zwei Cosinusschwingungen zusammensetzt.
Wie groß ist der Modulationsgrad  $m$?

$m \ = \ $

6

Berechnen Sie nun das Sendesignal  $s(t)$  unter der Voraussetzung  $c_3 = \rm 0.01/V^{2}$.  Welche der folgenden Aussagen treffen zu?

Durch  $c_3 ≠ 0$  wird die Spektrallinie bei  $f_{\rm T}$  verändert.
Durch  $c_3 ≠ 0$  entstehen lineare, also kompensierbare Verzerrungen.
Durch  $c_3 ≠ 0$  entstehen nichtlineare, also irreversible Verzerrungen.


Musterlösung

(1)  Die Trägerfrequenz ist sinnvollerweise gleich der Mittenfrequenz des Bandpasses:  $f_{\rm T}\hspace{0.15cm}\underline{ = 100\ \rm kHz}$.

  • Weicht  $f_{\rm T}$  um nicht mehr als  $±1 \ \rm kHz$  davon ab, ergibt sich ebenfalls eine „ZSB–AM”.


(2)  $s_1(t)$  beinhaltet nur den Träger  $z(t)$   ⇒   Antwort 1. Das Quellensignal  $q(t)$  wird durch den Bandpass entfernt.


(3)  Der quadratische Term  $z^2(t)$  besteht aus einem Gleichanteil  $($bei  $f = 0)$  sowie einem Anteil bei  $2f_{\rm T}$.

  • Auch alle Spektralanteile von  $q^2(t)$  liegen außerhalb des Bandpasses.
  • Richtig ist somit die letzte Antwort.


(4)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Der Term  $\cos^3(ω_Tt)$  hat seinen größten Signalanteil bei  $f = f_{\rm T}$.
  • Der dritte Lösungsvorschlag  $(3 · c_3 · z(t) · q^2(t))$  liegt zwischen  $100\ \rm kHz ± 18 \ \rm kHz $.
  • Teile davon – nämlich die Frequenzanteile zwischen  $90\ \rm kHz $ und $110 \ \rm kHz$  – werden durch den Bandpass nicht entfernt und sind somit auch in  $s(t)$  enthalten.


Erzeugtes AM–Spektrum

(5)  Das Sendesignal besteht aus insgesamt fünf Frequenzen:

$$s(t) = c_1 \cdot A_{\rm T} \cdot \cos(\omega_{\rm T} t)+ c_2 \cdot A_{\rm T} \cdot A_{\rm 1} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 1})t) + c_2 \cdot A_{\rm T} \cdot A_{\rm 2} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 2})t) \hspace{0.05cm}.$$
  • Beachten Sie hierbei, dass der zweite und dritte Term jeweils zwei Signalfrequenzen beinhaltet:
    • $\text{99 kHz}$  und  $\text{101 kHz}$ bzw.
    • $\text{91 kHz}$  und  $\text{109 kHz}$.


  • Mit  $A_{\rm T} = 4 \ \rm V$,  $A_1 = 1 V$,  $A_9 = 2 \ \rm V$,  $c_1 = 1$  und  $c_2 = 1/A_{\rm T} = \rm 0.25/V$  gilt auch:
$$s(t) = 4\,{\rm V} \cdot \cos(\omega_{\rm T} t) + 1\,{\rm V} \cdot \cos((\omega_{\rm T} \pm \omega_{\rm 1})t) + 2\,{\rm V}\cdot \cos((\omega_{\rm T} \pm \omega_{\rm 2})t) \hspace{0.05cm}.$$
  • Daran erkennt man, dass für den Modulationsgrad gilt:
$$m =\frac{A_1 + A_9}{A_{\rm T}} = \rm \frac{1\ V + 2 \ V}{4 \ V} \hspace{0.15cm}\underline{=0.75}.$$


(6)  Die Grafik zeigt oben das Spektrum  $S_+(f)$  – also nur positive Frequenzen – mit  $c_3 = 0$. 

  • Mit  $c_3 ≠ 0$  fallen folgende zusätzliche Spektralanteile an:
$$c_3 \cdot z^3(t)= \frac{c_3 \cdot A_{\rm T}^3}{4} \cdot \left[ 3 \cdot \cos(\omega_{\rm T} t) + \cos(3\omega_{\rm T} t)\right] \hspace{0.05cm}.$$
  • Der erste Anteil fällt in den Durchlassbereich des Bandpasses.  Das Diracgewicht bei  $f_{\rm T} = 100\ \rm kHz$  wird dadurch von ursprünglich  $8 \ \rm V$  auf  $\text{8 V + 0.75 · 0.01/V}^2 · 4^3 \text{ V}^3 = 8.48 \ \rm V$  erhöht.


  • Weiterhin liefert der dritte Spektralanteil von Teilaufgabe  (4)  einen unerwünschten Beitrag zu  $S_+(f)$.  Dabei gilt:
$$q^2(t) = \left[A_{\rm 1} \cdot \cos(\omega_{\rm 1} t)+A_{\rm 9} \cdot \cos(\omega_{\rm 9} t)\right]^2 = A_{\rm 1}^2 \cdot \cos^2(\omega_{\rm 1} t)+ A_{\rm 9}^2 \cdot \cos^2(\omega_{\rm 9}t) + 2 \cdot A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 1} t)\cdot \cos(\omega_{\rm 9} t)$$
$$ \Rightarrow \hspace{0.2cm} q^2(t) = \frac{A_{\rm 1}^2}{2} +\frac{A_{\rm 1}^2}{2} \cdot \cos(\omega_{\rm 2} t)+ \frac{A_{\rm 9}^2}{2} + \frac{A_{\rm 9}^2}{2} \cdot \cos(\omega_{\rm 18} t) + A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 8} t)+ A_{\rm 1} \cdot A_{\rm 9} \cdot \cos(\omega_{\rm 10} t).$$
  • Nach der Multiplikation mit  $z(t)$  fallen alle diese Beiträge bis auf den vierten in den Bereich von  $\text{90 kHz}$  bis  $\text{110 kHz}$.  Das Gewicht bei  $f_{\rm T} = 100\ \rm kHz$  wird um  $3 · c_3 · A_{\rm T} · 0.5 (A_1^2 + A_9^2) = 0.6\ \rm V$  weiter erhöht und ist somit  $9.08 \ \rm V$.


Weitere Anteile ergeben sich bei:

  • $98 \ \rm kHz$  und  $102 \ \rm kHz$  mit den Gewichten  $c_3 · A_{\rm T}/2 · A_1^2/2 = 0.03\ \rm V$,
  • $92 \ \rm kHz$  und  $108 \ \rm kHz$  mit den Gewichten  $3c_3 · A_{\rm T}/2 · A_1 · A_9 = 0.12\ \rm V$,
  • $90 \ \rm kHz$  und  $110 \ \rm kHz$  mit den Gewichten  $3c_3 · A_{\rm T}/2 · A_1 · A_9 = 0.12\ \rm V$.


Die untereSkizze in obiger Grafik zeigt das Spektrum  $S_+(f)$  unter Berücksichtigung der kubischen Anteile.  Man erkennt, dass neue Frequenzen entstanden sind, was auf nichtlineare Verzerrungen hindeutet.  Richtig sind somit die Lösungsvorschläge 1 und 3.