Aufgaben:Aufgabe 2.13: Quadratur-Amplitudenmodulation (QAM): Unterschied zwischen den Versionen
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID1055__Mod_A_2_11.png|right|frame|Betrachtetes Modell der QAM]] | + | [[Datei:P_ID1055__Mod_A_2_11.png|right|frame|Betrachtetes Modell der $\rm QAM$]] |
− | Die durch die Grafik erklärte ''Quadratur–Amplitudenmodulation'' (QAM) erlaubt unter gewissen Randbedingungen, die in dieser Aufgabe herausgefunden werden sollen, die gleichzeitige Übertragung von zwei Quellensignalen $q_1(t)$ und $q_2(t)$ über den gleichen Kanal. In dieser Aufgabe gelte mit $A_1 = A_2 = 2\ \rm V$: | + | Die durch die Grafik erklärte ''Quadratur–Amplitudenmodulation'' $\rm (QAM)$ erlaubt unter gewissen Randbedingungen, die in dieser Aufgabe herausgefunden werden sollen, die gleichzeitige Übertragung von zwei Quellensignalen $q_1(t)$ und $q_2(t)$ über den gleichen Kanal. |
+ | |||
+ | In dieser Aufgabe gelte mit $A_1 = A_2 = 2\ \rm V$: | ||
:$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$ | :$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$ | ||
:$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$ | :$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$ | ||
Zeile 12: | Zeile 14: | ||
:$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$ | :$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$ | ||
:$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$ | :$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$ | ||
− | Die Tiefpässe mit den Eingangssignalen $b_1(t)$ und $b_2(t)$ entfernen jeweils alle Frequenzanteile $|f| > f_{\rm T}$. | + | Die beiden Tiefpässe $\rm TP_1$ und $\rm TP_2$ mit den Eingangssignalen $b_1(t)$ und $b_2(t)$ entfernen jeweils alle Frequenzanteile $|f| > f_{\rm T}$. |
+ | |||
+ | |||
+ | |||
Zeile 33: | Zeile 38: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Berechnen Sie das Sendesignal $s(t)$ für den Fall $f_1 ≠ f_2$. Welche der folgenden Aussagen treffen zu? | + | {Berechnen Sie das Sendesignal $s(t)$ für den Fall $f_1 ≠ f_2$. Welche der folgenden Aussagen treffen zu? |
− | |type=" | + | |type="()"} |
- $s(t)$ besteht aus zwei Cosinus– und zwei Sinusschwingungen. | - $s(t)$ besteht aus zwei Cosinus– und zwei Sinusschwingungen. | ||
+ $s(t)$ setzt sich aus vier Cosinusschwingungen zusammen. | + $s(t)$ setzt sich aus vier Cosinusschwingungen zusammen. | ||
- $s(t)$ setzt sich aus vier Sinusschwingungen zusammen. | - $s(t)$ setzt sich aus vier Sinusschwingungen zusammen. | ||
− | {Wie lautet $s(t)$ für $f_1 = f_2 = 5 \ \rm kHz$. Welcher Signalwert tritt bei $t = 50 \ \rm µ s$ auf? | + | {Wie lautet $s(t)$ für $f_1 = f_2 = 5 \ \rm kHz$. Welcher Signalwert tritt bei $t = 50 \ \rm µ s$ auf? |
|type="{}"} | |type="{}"} | ||
$s(t = 50 \ \rm µ s) \ = \ $ { 2 3% } $\ \rm V$ | $s(t = 50 \ \rm µ s) \ = \ $ { 2 3% } $\ \rm V$ | ||
− | {Berechnen Sie für $f_1 = f_2$ und $Δϕ_{\rm T} = 0$ (kein Phasenversatz) die Sinkensignale $v_1(t)$ und $v_2(t)$. | + | {Berechnen Sie für $f_1 = f_2$ und $Δϕ_{\rm T} = 0$ (kein Phasenversatz) die Sinkensignale $v_1(t)$ und $v_2(t)$. Welche der folgenden Aussagen treffen zu? |
|type="[]"} | |type="[]"} | ||
− | + Es gilt $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$. | + | + Es gilt $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$. |
- Es ergeben sich lineare Verzerrungen. | - Es ergeben sich lineare Verzerrungen. | ||
- Es ergeben sich nichtlineare Verzerrungen. | - Es ergeben sich nichtlineare Verzerrungen. | ||
− | {Berechnen Sie für $f_1 = f_2$ und den Phasenversatz $ | + | {Berechnen Sie die Sinkensignale $v_1(t)$ und $v_2(t)$ für $f_1 = f_2$ und den Phasenversatz $Δϕ_{\rm T} = 30^\circ$. Welche Aussagen treffen zu? |
|type="[]"} | |type="[]"} | ||
- Es gilt $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$. | - Es gilt $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$. | ||
Zeile 55: | Zeile 60: | ||
- Es ergeben sich nichtlineare Verzerrungen. | - Es ergeben sich nichtlineare Verzerrungen. | ||
− | {Welche der folgenden Aussagen treffen für $f_1 ≠ f_2$ und $ | + | {Welche der folgenden Aussagen treffen für $f_1 ≠ f_2$ und $Δϕ_{\rm T} ≠ 0$ (beliebiger Phasenversatz) zu? |
|type="[]"} | |type="[]"} | ||
- Es gilt $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$. | - Es gilt $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$. |
Version vom 18. März 2020, 16:24 Uhr
Die durch die Grafik erklärte Quadratur–Amplitudenmodulation $\rm (QAM)$ erlaubt unter gewissen Randbedingungen, die in dieser Aufgabe herausgefunden werden sollen, die gleichzeitige Übertragung von zwei Quellensignalen $q_1(t)$ und $q_2(t)$ über den gleichen Kanal.
In dieser Aufgabe gelte mit $A_1 = A_2 = 2\ \rm V$:
- $$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
- $$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$
Die vier in der Grafik eingezeichneten Trägersignale lauten mit $ω_{\rm T} = 2π · 25\ \rm kHz$:
- $$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$
- $$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$
- $$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
- $$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$
Die beiden Tiefpässe $\rm TP_1$ und $\rm TP_2$ mit den Eingangssignalen $b_1(t)$ und $b_2(t)$ entfernen jeweils alle Frequenzanteile $|f| > f_{\rm T}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Weitere AM–Varianten.
- Bezug genommen wird insbesondere auf die Seite Quadratur-Amplitudenmodulation (QAM).
- Anzumerken ist, dass hier die Trägersignale $z_2(t)$ und $z_{2,\hspace{0.05cm}{\rm E}}(t)$ mit positivem Vorzeichen angesetzt wurden.
- Oft – so auch im Theorieteil – werden diese Trägersignale als „Minus–Sinus” angegeben.
- Gegeben sind folgende trigonometrischen Umformungen:
- $$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$
- $$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
Richtig ist demnach der zweite Lösungsvorschlag.
(2) Mit $A_1 = A_2 = 2 \ \rm V$ und $f_1 = f_2 = 5\ \rm kHz$ überlagern sich die erste und die dritte Cosinusschwingungen konstruktiv und die beiden anderen heben sich vollständig auf. Es ergibt sich somit das folgende einfache Ergebnis:
- $$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm \mu s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$
(3) Richtig ist der erste Lösungsvorschlag:
- Bei phasensynchroner Demodulation ($Δϕ_T = 0$) erhält man für die Signale vor den Tiefpässen mit $r(t) = s(t)$ gemäß der Teilaufgabe (2):
- $$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
- $$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
Nach Eliminierung der jeweiligen $45\ \rm kHz$–Anteile ergibt sich somit $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$.
(4) Analog zur Teilaufgabe (3) gilt nun:
- $$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
- $$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
- Die Sinkensignale $v_1(t)$ und $v_2(t)$ weisen bei dieser Konstellation gegenüber $q_1(t)$ und $q_2(t)$ Laufzeiten und damit Phasenverzerrungen auf.
- Diese gehören zur Klasse der linearen Verzerrungen ⇒ Antwort 2.
(5) Allgemein gilt für das Empfangssignal:
- $$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Die Multiplikation mit den empfängerseitigen Trägersignalen $z_{1,\hspace{0.05cm}{\rm E}}(t)$ und $z_{2,\hspace{0.05cm}{\rm E}}(t)$ und die Bandbegrenzung führt zu den Sinkensignalen
- $$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
- $$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$
Daraus ist zu ersehen:
- Bei einem Phasenversatz von $Δϕ_{\rm T} = 30^\circ$ beinhaltet das Sinkensignal $v_1(t)$ nicht nur das um $\cos(30^\circ) = 0.866$ gedämpfte Signal $q_1(t)$, sondern auch die in $q_2(t)$ enthaltene Frequenz $f_2$.
- Diese ist mit dem Faktor $\sin(30^\circ) = 0.5$ gewichtet.
- Es liegen somit nichtlineare Verzerrungen vor ⇒ Antwort 3.