Aufgaben:Exercise 2.5Z: Multi-Path Scenario: Unterschied zwischen den Versionen
Javier (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}} [[Datei:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]…“) |
Javier (Diskussion | Beiträge) |
||
Zeile 3: | Zeile 3: | ||
[[Datei:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]] | [[Datei:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]] | ||
− | In [[ | + | In [[Tasks:2.5_Scatter-Function| Task 2.5]] the delay–Doppler–function was predefined. From this, one should calculate and interpret the other system functions. The default for the scatter function $s(\tau_0, f_{\rm D})$ was |
− | + | $$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\dew_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$ | |
− | :$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\ | + | :$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz}) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '' | + | ''Note:'' In our learning tutorial, $s(\tau_0, \hspace{0.05cm} f_{\rm D})$ is also identified with $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$ . |
− | + | Here we have replaced the delay variable $\tau$ with $\tau_0$ . The new variable $\tau_0$ describes the difference between the runtime of a path and the runtime $\tau_1$ of the main path. The main path is thus identified in the above equation by $\tau_0 = 0$ . | |
− | + | Now an attempt is made to find a mobile radio scenario in which this scatter function would actually occur. The basic structure is sketched above as a top view, and it applies: | |
− | * | + | * A single frequency is transmitted $f_{\rm S} = 2 \ \rm GHz$. |
− | * | + | * The mobile receiver $\rm (E)$ is represented here by a yellow dot. It is not known whether the vehicle is stationary, moving towards the transmitter $\rm (S)$ or moving away from it. |
− | * | + | * The signal reaches the receiver via a main path (red) and two secondary paths (blue and green). Reflections from the obstacles cause phase shifts of $\pi$. |
− | * ${\rm S}_2$ | + | * ${\rm S}_2$ and ${\rm S}_3$ are to be understood here as fictitious transmitters from whose position the angles of incidence $\alpha_2$ and $\alpha_3$ of the secondary paths can be determined. |
− | * | + | * For the Doppler frequency applies with the signal frequency $f_{\rm S}$, the angle $\alpha$, the velocity $v$ and the velocity of light $c = 3 \cdot 10^8 \ \rm m/s$: |
− | + | $$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha) | |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | * The damping factors $k_1$, $k_2$ and $k_3$ are inversely proportional to the path lengths $d_1$, $d_2$ and $d_3$. This corresponds to the path loss exponent $\gamma = 2$. |
− | * | + | *This means: The signal power decreases quadratically with distance $d$ and accordingly the signal amplitude decreases linearly with $d$. |
Zeile 30: | Zeile 30: | ||
− | '' | + | ''Notes:'' |
− | * | + | * This task belongs to chapter [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS–Kanalmodell]]. |
− | * | + | *We focus especially on the [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung#Gebr.C3.A4uchliches_Pfadverlustmodell| path-loss model]] and the [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#Dopplerfrequenz_und_deren_Verteilung| Doppler effect]]. |
− | === | + | ===Questionnaire=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {At first, consider only the Dirac function at $\tau = 0$ and $f_{\rm D} = 100 \ \rm Hz$. Which statements apply to the recipient? |
|type="()"} | |type="()"} | ||
− | - | + | - The receiver is standing. |
− | + | + | + The receiver moves directly towards the transmitter. |
− | - | + | - The receiver moves away in the opposite direction to the transmitter. |
− | { | + | {What is the vehicle speed? |
|type="{}"} | |type="{}"} | ||
− | $v \ = \ ${ 54 3% } $\ \rm km/h$ | + | $v \ = \ ${ 54 3% } $\ \ \rm km/h$ |
− | { | + | {Which statements apply to the Dirac at $\tau_0 = 1 \ \ \rm µ s$ and $f_{\rm D} = +50 \ \ \rm Hz$? |
|type="[]"} | |type="[]"} | ||
− | + | + | + This Dirac comes from the blue path. |
− | - | + | - This Dirac comes from the green path. |
− | - | + | - The angle is $30^\circ$. |
− | + | + | + The angle is $60^\circ$. |
− | { | + | {What statements apply to the green path? |
|type="[]"} | |type="[]"} | ||
− | + | + | + For this, $\tau_0 = 1 \ \ \rm µ s$ and $f_{\rm D} = \, –50 \ \ \rm Hz$. |
− | - | + | - The angle $\alpha_3$ (see graphic) is $60^\circ$. |
− | + | + | + The angle $\alpha_3$ is $240^\circ$. |
− | { | + | {What are the relations between the two side paths? |
|type="[]"} | |type="[]"} | ||
− | + | + | + It applies $d_3 = d_2$. |
− | + | + | + It is $k_3 = k_2$. |
− | + | + | + It is $\tau_3 = \tau_2$. |
− | { | + | {What is the difference in time $\Delta d = d_2 - d_1$? |
|type="{}"} | |type="{}"} | ||
− | $\Delta d \ = \ ${ 300 3% } $\ \rm m$ | + | $\ Delta d \ = \ ${ 300 3% } $\ \ \rm m$ |
− | { | + | {What is the relationship between $d_2$ and $d_1$? |
|type="{}"} | |type="{}"} | ||
− | $d_2/d_1 \ = \ ${ 1 | + | $d_2/d_1 \ = \ ${ 1,414 3% } |
− | { | + | {Indicate the distances $d_1$ and $d_2$ . |
|type="{}"} | |type="{}"} | ||
− | $d_1 \ = \ ${ 724 3% } $\ \rm m$ | + | $d_1 \ = \ ${724 3% } $\ \ \rm m$ |
− | $d_2 \ = \ ${ 1024 3% } $\ \rm m$ | + | $d_2 \ = \ ${ 1024 3% } $\ \ \rm m$ |
</quiz> | </quiz> | ||
− | === | + | ===Sample solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The Doppler frequency is positive for $\tau_0$. This means that the receiver is moving towards the transmitter ⇒ <u>statement 2</u>. |
− | '''(2)''' | + | '''(2)''' The equation for the Doppler frequency is general or for the angle $\alpha = 0$. |
− | + | $$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha) | |
− | \hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}. | + | \hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}.$ |
− | * | + | *This is what you get for speed: |
− | + | $$v = \frac{f_{\rm D}}}{f_{\rm S} \cdot c = \frac{10^2\,{\rm Hz}}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s} | |
− | \hspace{0.1cm} \underline {= 54 \,{\rm km/h | + | \hspace{0.1cm} \underline {= 54 \,{\rm km/h} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' Correct are the <u>solutions 1 and 4</u>: |
− | * | + | *The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$ comes from the blue path, because the receiver somehow moves towards the virtual transmitter ${\rm S}_2$ (at the reflection point), although not in a direct direction. |
− | * | + | *The angle $\alpha_2$ between the direction of movement and the connecting line ${\rm S_2 – E}$ is $60^\circ$: |
− | + | $$\cos(\alpha_2) = \frac{f_{\rm D}}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2 | |
\hspace{0.1cm} \underline {= 60^{\circ} } | \hspace{0.1cm} \underline {= 60^{\circ} } | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(4)''' | + | '''(4)''' Correct are the <u>statements 1 and 3</u>: |
− | * | + | *From $f_{\rm D} = \, –50 \ \rm Hz$ follows $\alpha_3 = \alpha_2 ± \pi$, so $\alpha_3 \ \underline {= 240^\circ}$. |
− | '''(5)''' <u> | + | '''(5)''' <u>All statements are correct</u>: |
− | * | + | *The two Dirac functions at $± 50 \ \ \rm Hz$ have the same running time. For both durations $\tau_3 = \tau_2 = \tau_1 + \tau_0$ is valid. |
− | * | + | *From the same transit time, however, also follows $d_3 = d_2$ and with the same length also the same damping factors. |
− | '''(6)''' | + | '''(6)''' The runtime difference is $\tau_0 = 1 \ \rm µ s$, as shown in the equation for $s(\tau_0, f_{\rm D})$. |
− | * | + | * This gives the difference in length: |
− | + | $$\Delta d = \dew_0 \cdot c = 10^{–6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$ | |
− | '''(7)''' | + | '''(7)''' The path loss exponent was assumed to be $\gamma = 2$ for this task. |
− | * | + | *Then $k_1 = K/d_1$ and $k_2 = K/d_2$. |
− | * | + | *The minus sign takes into account the $180^\circ$–phase rotation on the secondary paths. |
− | * | + | *From the weights of the Dirac functions one can read $k_1 = \sqrt{0.5}$ and $k_2 = -0.5$. From this follows: |
− | + | $$\frac{\2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2} | |
− | \hspace{0.15cm} \underline {= 1 | + | \hspace{0.15cm} \underline {= 1,414} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The constant $K$ is only an auxiliary variable that does not need to be considered further. |
− | '''(8)''' Aus $d_2/d_1 = 2^{-0.5}$ | + | '''(8)''' Aus $d_2/d_1 = 2^{-0.5}$ and $\Delta d = d_2 \, - d_1 = 300 \ \rm m$ finally follows: |
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | :$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
− | d_1 = \frac{300\,{\rm m}}{\sqrt{2} | + | d_1 = \frac{300\,{\rm m}}}{\sqrt{2} - 1} \hspace{0.15cm} \underline {= 724\,{\rm m}} |
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}} | ||
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | |||
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]] | [[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]] |
Version vom 22. April 2020, 12:12 Uhr
In Task 2.5 the delay–Doppler–function was predefined. From this, one should calculate and interpret the other system functions. The default for the scatter function $s(\tau_0, f_{\rm D})$ was $$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\dew_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
- $$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\dew_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz}) \hspace{0.05cm}.$$
Note: In our learning tutorial, $s(\tau_0, \hspace{0.05cm} f_{\rm D})$ is also identified with $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$ .
Here we have replaced the delay variable $\tau$ with $\tau_0$ . The new variable $\tau_0$ describes the difference between the runtime of a path and the runtime $\tau_1$ of the main path. The main path is thus identified in the above equation by $\tau_0 = 0$ .
Now an attempt is made to find a mobile radio scenario in which this scatter function would actually occur. The basic structure is sketched above as a top view, and it applies:
- A single frequency is transmitted $f_{\rm S} = 2 \ \rm GHz$.
- The mobile receiver $\rm (E)$ is represented here by a yellow dot. It is not known whether the vehicle is stationary, moving towards the transmitter $\rm (S)$ or moving away from it.
- The signal reaches the receiver via a main path (red) and two secondary paths (blue and green). Reflections from the obstacles cause phase shifts of $\pi$.
- ${\rm S}_2$ and ${\rm S}_3$ are to be understood here as fictitious transmitters from whose position the angles of incidence $\alpha_2$ and $\alpha_3$ of the secondary paths can be determined.
- For the Doppler frequency applies with the signal frequency $f_{\rm S}$, the angle $\alpha$, the velocity $v$ and the velocity of light $c = 3 \cdot 10^8 \ \rm m/s$:
$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha) \hspace{0.05cm}.$$
- The damping factors $k_1$, $k_2$ and $k_3$ are inversely proportional to the path lengths $d_1$, $d_2$ and $d_3$. This corresponds to the path loss exponent $\gamma = 2$.
- This means: The signal power decreases quadratically with distance $d$ and accordingly the signal amplitude decreases linearly with $d$.
Notes:
- This task belongs to chapter Das GWSSUS–Kanalmodell.
- We focus especially on the path-loss model and the Doppler effect.
Questionnaire
Sample solution
(2) The equation for the Doppler frequency is general or for the angle $\alpha = 0$.
$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha)
\hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}.$
*This is what you get for speed:
$$v = \frac{f_{\rm D}}}{f_{\rm S} \cdot c = \frac{10^2\,{\rm Hz}}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}
\hspace{0.1cm} \underline {= 54 \,{\rm km/h} \hspace{0.05cm}.$$ '''(3)''' Correct are the <u>solutions 1 and 4</u>: *The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$ comes from the blue path, because the receiver somehow moves towards the virtual transmitter ${\rm S}_2$ (at the reflection point), although not in a direct direction. *The angle $\alpha_2$ between the direction of movement and the connecting line ${\rm S_2 – E}$ is $60^\circ$: $$\cos(\alpha_2) = \frac{f_{\rm D}}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2 \hspace{0.1cm} \underline {= 60^{\circ} } \hspace{0.05cm}.$$ '''(4)''' Correct are the <u>statements 1 and 3</u>: *From $f_{\rm D} = \, –50 \ \rm Hz$ follows $\alpha_3 = \alpha_2 ± \pi$, so $\alpha_3 \ \underline {= 240^\circ}$. '''(5)''' <u>All statements are correct</u>: *The two Dirac functions at $± 50 \ \ \rm Hz$ have the same running time. For both durations $\tau_3 = \tau_2 = \tau_1 + \tau_0$ is valid. *From the same transit time, however, also follows $d_3 = d_2$ and with the same length also the same damping factors. '''(6)''' The runtime difference is $\tau_0 = 1 \ \rm µ s$, as shown in the equation for $s(\tau_0, f_{\rm D})$. * This gives the difference in length: $$\Delta d = \dew_0 \cdot c = 10^{–6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$ '''(7)''' The path loss exponent was assumed to be $\gamma = 2$ for this task. *Then $k_1 = K/d_1$ and $k_2 = K/d_2$. *The minus sign takes into account the $180^\circ$–phase rotation on the secondary paths. *From the weights of the Dirac functions one can read $k_1 = \sqrt{0.5}$ and $k_2 = -0.5$. From this follows: $$\frac{\2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2} \hspace{0.15cm} \underline {= 1,414} \hspace{0.05cm}.$$ *The constant $K$ is only an auxiliary variable that does not need to be considered further. '''(8)''' Aus $d_2/d_1 = 2^{-0.5}$ and $\Delta d = d_2 \, - d_1 = 300 \ \rm m$ finally follows: :$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_1 = \frac{300\,{\rm m}}}{\sqrt{2} - 1} \hspace{0.15cm} \underline {= 724\,{\rm m}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}} \hspace{0.05cm}. $$