Aufgaben:Aufgabe 3.8: OVSF–Codes: Unterschied zwischen den Versionen
Zeile 67: | Zeile 67: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | [[Datei:P_ID2263__Bei_A_4_6a.png|right|frame|OVSF–Baumstruktur für $J = 8$]] | + | [[Datei:P_ID2263__Bei_A_4_6a.png|right|frame|OVSF–Baumstruktur für $J = 8$]] |
− | '''(1)''' Die folgende Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer. | + | '''(1)''' Die folgende Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer. |
*Daraus ist ersichtlich, dass die <u>Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite. | *Daraus ist ersichtlich, dass die <u>Lösungsvorschläge 1, 3 und 4</u> zutreffen, nicht jedoch der zweite. | ||
− | '''(2)''' Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad $J = 8$ zugewiesen, so können $K_{\rm max} \ \underline{= 8}$ Teilnehmer versorgt werden. | + | '''(2)''' Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad $J = 8$ zugewiesen, so können $K_{\rm max} \ \underline{= 8}$ Teilnehmer versorgt werden. |
− | '''(3)''' Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in der Grafik) $\ \Rightarrow \ \ \underline{K = 5}$. | + | '''(3)''' Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in der Grafik) $\ \Rightarrow \ \ \underline{K = 5}$. |
'''(4)''' Wir bezeichnen mit | '''(4)''' Wir bezeichnen mit | ||
− | *$K_{4} = 2$ die Anzahl der Spreizfolgen mit $J = 4$, | + | *$K_{4} = 2$ die Anzahl der Spreizfolgen mit $J = 4$, |
− | *$K_{8} = 1$ die Anzahl der Spreizfolgen mit $J = 8$, | + | *$K_{8} = 1$ die Anzahl der Spreizfolgen mit $J = 8$, |
− | *$K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$, | + | *$K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$, |
− | *$K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$, | + | *$K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$, |
Zeile 89: | Zeile 89: | ||
:$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} | :$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ | \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ | ||
− | *Wegen $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt ⇒ <u>Antwort JA</u>. | + | *Wegen $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt ⇒ <u>Antwort JA</u>. |
− | *Die zweimalige Bereitstellung des Spreizgrads $J = 4$ blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit $J = 8$ bleiben auf der $J = 8$–Ebene noch | + | *Die zweimalige Bereitstellung des Spreizgrads $J = 4$ blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit $J = 8$ bleiben auf der $J = 8$–Ebene noch drei der acht Äste zu belegen, und so weiter und so fort. |
{{ML-Fuß}} | {{ML-Fuß}} |
Aktuelle Version vom 17. August 2020, 16:42 Uhr
Die Spreizcodes für UMTS sollten
- orthogonal sein, um dadurch eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
- gleichzeitig auch eine flexible Realisierung unterschiedlicher Spreizfaktoren $J$ ermöglichen.
Ein Beispiel hierfür sind die „Codes mit variablem Spreizfaktor” (englisch: Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen.
Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $\mathcal{C}$ zwei neue Codes $(+\mathcal{C}\ +\mathcal{C})$ und $(+\mathcal{C} \ –\mathcal{C})$.
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen
- $$\langle c_\nu^{(0)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$\langle c_\nu^{(2)}\rangle = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
- $$ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
Gemäß dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle, \text{...} ,\langle c_\nu^{(7)}\rangle.$
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf.
- Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden, oder
- die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
- Insbesondere Bezug genommen wird auf die Seite Codes mit variablem Spreizfaktor (OVSF–Code).
Fragebogen
Musterlösung
(1) Die folgende Grafik zeigt die OVSF–Baumstruktur für $J = 8$ Nutzer.
- Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.
(2) Wird jedem Nutzer ein Spreizcode mit dem Spreizgrad $J = 8$ zugewiesen, so können $K_{\rm max} \ \underline{= 8}$ Teilnehmer versorgt werden.
(3) Wenn drei Teilnehmer mit $J = 4$ versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit $J = 8$ bedient werden (siehe beispielhafte gelbe Hinterlegung in der Grafik) $\ \Rightarrow \ \ \underline{K = 5}$.
(4) Wir bezeichnen mit
- $K_{4} = 2$ die Anzahl der Spreizfolgen mit $J = 4$,
- $K_{8} = 1$ die Anzahl der Spreizfolgen mit $J = 8$,
- $K_{16} = 2$ die Anzahl der Spreizfolgen mit $J = 16$,
- $K_{32} = 8$ die Anzahl der Spreizfolgen mit $J = 32$,
Dann muss folgende Bedingung erfüllt sein:
- $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32\hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
- Wegen $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$ ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA.
- Die zweimalige Bereitstellung des Spreizgrads $J = 4$ blockiert zum Beispiel die obere Hälfte des Baums, nach der Bereitstellung eines Spreizcodes mit $J = 8$ bleiben auf der $J = 8$–Ebene noch drei der acht Äste zu belegen, und so weiter und so fort.