Aufgaben:Aufgabe 2.7: C-Programme z1 und z2: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 14: Zeile 14:
  
  
 
+
Hinweise:  
 
 
''Hinweise:''
 
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen|Erzeugung von diskreten Zufallsgrößen]].
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen|Erzeugung von diskreten Zufallsgrößen]].
 
*Insbesondere wird auf die Seite   [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen#Erzeugung_mehrstufiger_Zufallsgr.C3.B6.C3.9Fen|Erzeugung mehrstufiger Zufallsgrößen]] Bezug  genommen.
 
*Insbesondere wird auf die Seite   [[Stochastische_Signaltheorie/Erzeugung_von_diskreten_Zufallsgrößen#Erzeugung_mehrstufiger_Zufallsgr.C3.B6.C3.9Fen|Erzeugung mehrstufiger Zufallsgrößen]] Bezug  genommen.
Zeile 27: Zeile 25:
 
<quiz display=simple>
 
<quiz display=simple>
 
{Es gelte&nbsp; $M=4$&nbsp; und&nbsp; $\text{p_array} = \big[0.2, \ 0.3, \ 0.4, \ 0.1 \big]$.  
 
{Es gelte&nbsp; $M=4$&nbsp; und&nbsp; $\text{p_array} = \big[0.2, \ 0.3, \ 0.4, \ 0.1 \big]$.  
<br>Welches Ergebnis liefert die Funktion&nbsp; $z1$, wenn die Randomfunktion den&nbsp; Wert $x = 0.75$&nbsp; zur&uuml;ckgibt?
+
<br>Welches Ergebnis liefert die Funktion&nbsp; $z1$,&nbsp; wenn die Randomfunktion den&nbsp; Wert $x = 0.75$&nbsp; zur&uuml;ckgibt?
 
|type="{}"}
 
|type="{}"}
 
$z1 \ = \ $  { 2 }
 
$z1 \ = \ $  { 2 }
Zeile 34: Zeile 32:
 
|type="[]"}
 
|type="[]"}
 
- Man könnte auf die Zuweisung&nbsp; $\text{x = random()}$&nbsp;  in Zeile 5 verzichten und in Zeile 8 direkt mit&nbsp;  $\text{random()}$&nbsp; vergleichen.
 
- Man könnte auf die Zuweisung&nbsp; $\text{x = random()}$&nbsp;  in Zeile 5 verzichten und in Zeile 8 direkt mit&nbsp;  $\text{random()}$&nbsp; vergleichen.
+ Sind alle übergebenen Wahrscheinlichkeiten gleich, so g&auml;be es schnellere Programmrealisierungen als&nbsp; $z1$.
+
+ Sind alle übergebenen Wahrscheinlichkeiten gleich,&nbsp; so g&auml;be es schnellere Programmrealisierungen als&nbsp; $z1$.
 
+ Der R&uuml;ckgabewert&nbsp; $\text{random() = 0.2}$&nbsp; f&uuml;hrt zum Ergebnis&nbsp; $z1= 1$.
 
+ Der R&uuml;ckgabewert&nbsp; $\text{random() = 0.2}$&nbsp; f&uuml;hrt zum Ergebnis&nbsp; $z1= 1$.
  
Zeile 40: Zeile 38:
 
{Welche der folgenden Aussagen sind bez&uuml;glich&nbsp; $z2$&nbsp; zutreffend?
 
{Welche der folgenden Aussagen sind bez&uuml;glich&nbsp; $z2$&nbsp; zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Das Programm erzeugt eine <i>binomialverteilte</i>&nbsp; Zufallsgr&ouml;&szlig;e.
+
+ Das Programm erzeugt eine binomialverteilte Zufallsgr&ouml;&szlig;e.
-  Das Programm erzeugt eine <i>poissonverteilte</i>&nbsp; Zufallsgr&ouml;&szlig;e.
+
-  Das Programm erzeugt eine poissonverteilte Zufallsgr&ouml;&szlig;e.
 
+ Mit&nbsp; $I = 4$&nbsp; sind f&uuml;r&nbsp; $z2$&nbsp; die Werte&nbsp; $0, \ 1, \ 2, \ 3,  \ 4$&nbsp; m&ouml;glich.
 
+ Mit&nbsp; $I = 4$&nbsp; sind f&uuml;r&nbsp; $z2$&nbsp; die Werte&nbsp; $0, \ 1, \ 2, \ 3,  \ 4$&nbsp; m&ouml;glich.
+ Das Einbinden der mathematischen Bibliothek &bdquo;'''math.h'''&rdquo; ist erforderlich, da in&nbsp; $z2$&nbsp; die Funktion &bdquo;'''pow'''&rdquo;  (Potenzieren) verwendet wird.
+
+ Das Einbinden der mathematischen Bibliothek &bdquo;'''math.h'''&rdquo; ist erforderlich, da in&nbsp; $z2$&nbsp; die Funktion&nbsp; '''pow''' &nbsp;  (Potenzieren)&nbsp; verwendet wird.
  
  

Version vom 29. Dezember 2021, 14:44 Uhr

C-Programme zur Erzeugung
diskreter Zufallsgrößen

Die beiden hier angegebenen C-Programme eignen sich zur Erzeugung diskreter Zufallsgrößen:

  • Die Funktion  $z1$  erzeugt eine  $M$–stufige Zufallsgröße mit dem Wertevorrat  $\{0, 1$, ... , $M-1\}$.  Die dazugehörigen Wahrscheinlichkeiten werden im Array  $\text{p_array}$  mit der Eigenschaft „Float” übergeben.  Die Funktion  $\text{random()}$  liefert gleichverteilte Float–Zufallsgrößen zwischen  $0$  und  $1$.
  • Eine zweite Funktion  $z2$  (Quelltext siehe unten)  liefert eine spezielle Wahrscheinlichkeitsverteilung, die durch die beiden Parameter  $I$  und  $p$  festgelegt ist.  Dieses geschieht unter Verwendung der Funktion  $z1$.



Hinweise:



Fragebogen

1

Es gelte  $M=4$  und  $\text{p_array} = \big[0.2, \ 0.3, \ 0.4, \ 0.1 \big]$.
Welches Ergebnis liefert die Funktion  $z1$,  wenn die Randomfunktion den  Wert $x = 0.75$  zurückgibt?

$z1 \ = \ $

2

Welche der folgenden Aussagen sind bezüglich  $z1$  zutreffend?

Man könnte auf die Zuweisung  $\text{x = random()}$  in Zeile 5 verzichten und in Zeile 8 direkt mit  $\text{random()}$  vergleichen.
Sind alle übergebenen Wahrscheinlichkeiten gleich,  so gäbe es schnellere Programmrealisierungen als  $z1$.
Der Rückgabewert  $\text{random() = 0.2}$  führt zum Ergebnis  $z1= 1$.

3

Welche der folgenden Aussagen sind bezüglich  $z2$  zutreffend?

Das Programm erzeugt eine binomialverteilte Zufallsgröße.
Das Programm erzeugt eine poissonverteilte Zufallsgröße.
Mit  $I = 4$  sind für  $z2$  die Werte  $0, \ 1, \ 2, \ 3, \ 4$  möglich.
Das Einbinden der mathematischen Bibliothek „math.h” ist erforderlich, da in  $z2$  die Funktion  pow   (Potenzieren)  verwendet wird.

4

Welcher Wert steht in  $\text{p_array[2]}$  beim Aufruf mit  $I = 4$  und  $p = 0.25$?

$\text{p_array[2]} \ = \ $


Musterlösung

(1)  Nach dem ersten Schleifendurchlauf  $(m = 0)$  ist die Variable  $\text{summe = 0.2}$, beim nächsten  $(m = 1)$  gilt  $\text{summe = 0.2 + 0.3 = 0.5}$.

  • In beiden Fällen ist somit die Variable  $\text{summe} < x = 0.75$. 
  • Erst bei  $m = 2$  ist die Rücksprungbedingung erfüllt:   $0.9 > x$.  Somit ist  $\underline{z1 = 2}$.


(2)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Würde man auf die Hilfsvariable  $x$  verzichten und in Zeile 8 dafür  $\text{summe > random()}$  schreiben, so würde bei jedem Schleifendurchgang ein neuer Zufallswert erzeugt und  $z1$  hätte dann nicht die gewünschten Eigenschaften.
  • $z1$  arbeitet gemäß dem Schaubild auf der Seite „Erzeugung mehrstufiger Zufallsgrößen“ im Theorieteil.  Dort findet man eine deutlich schnellere Implementierung für den Fall gleicher Wahrscheinlichkeiten  $(1/M)$.
  • Im ersten Durchlauf  $(m = 0)$  ist in diesem Fall die Rücksprungbedingung aufgrund der Kleiner/Gleich–Abfrage nicht erfüllt;  der Ausgabewert ist tatsächlich  $z1 = 1$.


(3)  Richtig sind die Lösungsvorschläge 1, 3 und 4:

  • Es ergibt sich eine binomialverteilte Zufallsgröße, und zwar mit dem Wertevorrat  $\{0, 1, 2, 3, 4\}$.
  • Für die Berechnung der Wahrscheinlichkeit  ${\rm Pr}(z2 = 0) = (1 -p)^{I}$  benötigt man hier die mathematische Bibliothek.
  • Das Potenzieren könnte aber auch durch  $I$–fache Multiplikation realisiert werden.


(4)  Aufgrund der Zeile 6 beinhaltet das Feldelement  $\text{p_array[0]}$  vor der Programmschleife  $(i = 0)$  den Wert  $(1 -p)^{I}$. 

  • Im ersten Schleifendurchlauf  $(i = 1)$  wird folgender Wert eingetragen:
$$\text{p_array[1]}=\frac{ p\cdot I}{ 1- p}\cdot\text{p_array[0]}= I\cdot p\cdot(1- p)^{ I- 1}={\rm Pr}(z2= 1) .$$
  • Im zweiten Schleifendurchlauf  $(i = 2)$  wird die Wahrscheinlichkeit für das Ergebnis „$z2=2$” berechnet:
$$\text{p_array[2]}=\frac{p\cdot (I- 1)}{ 2\cdot ( 1- p)}\cdot\text{p_array[1]}= \left({ I \atop { 2}}\right)\cdot p^{\rm 2}\cdot( 1- p)^{\rm 2}={\rm Pr}( z2 = 2) .$$
  • Für  $I= 4$  und  $p = 0.25$  erhält man folgenden Zahlenwert   ⇒   „$4$  über  $2$”   $=6$:
$$\text{p_array[2]}={\rm Pr}( z 2=2)=6\cdot\frac{1}{16}\cdot\frac{9}{16} \hspace{0.15cm}\underline{=0.211}.$$