Stochastische Signaltheorie/Stochastische Systemtheorie: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 8: Zeile 8:
 
== # ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL # ==
 
== # ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL # ==
 
<br>
 
<br>
Dieses Kapitel beschreibt den Einfluss eines Filters auf die Autokorrelationsfunktion (AKF) und das Leistungsdichtespektrum (LDS) stochastischer Signale.  
+
Dieses Kapitel beschreibt den Einfluss eines Filters auf die&nbsp; &raquo;Autokorrelationsfunktion&laquo;&nbsp; $\rm  (AKF)$&nbsp; und das&nbsp; &raquo;Leistungsdichtespektrum&laquo;&nbsp; $\rm  (LDS)$&nbsp; stochastischer Signale.  
  
 
Im Einzelnen werden behandelt:
 
Im Einzelnen werden behandelt:
  
*die Berechnung von AKF und LDS am Filterausgang (''Stochastische Systemtheorie''&nbsp;),
+
*die&nbsp; &raquo;Berechnung von AKF und LDS&laquo;&nbsp; am Filterausgang&nbsp; ("Stochastische Systemtheorie"),
*die Struktur und die Darstellung ''Digitaler Filter''&nbsp; (nichrekursiv und rekursiv),
+
*die Struktur und die Darstellung&nbsp; &raquo;Digitaler Filter&laquo;&nbsp; (nichrekursiv und rekursiv),
*die ''Dimensionierung''&nbsp; der Filterkoeffizienten für eine vorgegebene AKF,
+
*die&nbsp; &raquo;Dimensionierung der Filterkoeffizienten&laquo;&nbsp; für eine vorgegebene AKF,
*die Bedeutung des ''Matched-Filters''&nbsp; für Nachrichtensysteme (SNR-Maximierung),
+
*die Bedeutung des&nbsp; &raquo;Matched-Filters&laquo;&nbsp; für die SNR-Maximierung von Nachrichtensystemen,
*die Eigenschaften des ''Wiener-Kolmogorow-Filters''&nbsp; zur Signalrekonstruktion.
+
*die Eigenschaften des&nbsp; &raquo;Wiener-Kolmogorow-Filters&laquo;&nbsp; zur Signalrekonstruktion.
  
  
Zeile 31: Zeile 31:
  
  
==Problemstellung==
+
==Systemmodell und Problemstellung==
 
<br>
 
<br>
[[Datei:Sto_T_5_1_S1_version2.png |right| 300px|frame|Filtereinfluss auf Spektrum und Leistungsdichtespektrum (LDS)]]
+
Wir betrachten wie im Buch&nbsp; [[Lineare zeitinvariante Systeme]]&nbsp; die rechts skizzierte Anordnung,&nbsp; wobei das System  
Wir betrachten wie im Buch&nbsp; [[Lineare zeitinvariante Systeme]]&nbsp; die rechts skizzierte Anordnung, wobei das System  
 
 
*sowohl durch die Impulsantwort&nbsp; $h(t)$  
 
*sowohl durch die Impulsantwort&nbsp; $h(t)$  
 
*als auch durch seinen Frequenzgang&nbsp; $H(f)$  
 
*als auch durch seinen Frequenzgang&nbsp; $H(f)$  
Zeile 40: Zeile 39:
  
 
eindeutig beschrieben ist.&nbsp; Der Zusammenhang zwischen diesen Beschreibungsgrößen im Zeit&ndash; und Frequenzbereich ist durch die&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Eigenschaften_aperiodischer_Signale|Fouriertransformation]]&nbsp; gegeben.  
 
eindeutig beschrieben ist.&nbsp; Der Zusammenhang zwischen diesen Beschreibungsgrößen im Zeit&ndash; und Frequenzbereich ist durch die&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Eigenschaften_aperiodischer_Signale|Fouriertransformation]]&nbsp; gegeben.  
<br clear=all>
+
[[Datei:Sto_T_5_1_S1_version2.png |right| 300px|frame|Filtereinfluss auf Spektrum und Leistungsdichtespektrum (LDS)]]
Legt man an den Eingang das Signal&nbsp; $x(t)$&nbsp; an und bezeichnet das Ausgangssignal mit&nbsp; $y(t)$, so liefert die klassische Systemtheorie folgende Aussagen:  
+
<br>Legt man an den Eingang das Signal&nbsp; $x(t)$&nbsp; an und bezeichnet das Ausgangssignal mit&nbsp; $y(t)$,&nbsp; so liefert die klassische Systemtheorie folgende Aussagen:  
 
*Das Ausgangssignal&nbsp; $y(t)$&nbsp; ergibt sich aus der&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltung]]&nbsp; zwischen dem Eingangssignal&nbsp; $x(t)$&nbsp; und der Impulsantwort&nbsp; $h(t)$.&nbsp; Die folgende Gleichung gilt für deterministische und stochastische Signale gleichermaßen:
 
*Das Ausgangssignal&nbsp; $y(t)$&nbsp; ergibt sich aus der&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltung]]&nbsp; zwischen dem Eingangssignal&nbsp; $x(t)$&nbsp; und der Impulsantwort&nbsp; $h(t)$.&nbsp; Die folgende Gleichung gilt für deterministische und stochastische Signale gleichermaßen:
 
:$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
 
:$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
  
 
*Bei deterministischen Signalen geht man meist den Umweg über die Spektralfunktionen.&nbsp; Das Spektrum&nbsp; $X(f)$&nbsp; ist die Fouriertransformierte von&nbsp; $x(t)$.&nbsp; Die Multiplikation mit dem Frequenzgang&nbsp; $H(f)$&nbsp; führt zum Ausgangsspektrum&nbsp; $Y(f)$.&nbsp; Daraus lässt sich das Signal&nbsp; $y(t)$&nbsp;  durch Fourierrücktransformation gewinnen.  
 
*Bei deterministischen Signalen geht man meist den Umweg über die Spektralfunktionen.&nbsp; Das Spektrum&nbsp; $X(f)$&nbsp; ist die Fouriertransformierte von&nbsp; $x(t)$.&nbsp; Die Multiplikation mit dem Frequenzgang&nbsp; $H(f)$&nbsp; führt zum Ausgangsspektrum&nbsp; $Y(f)$.&nbsp; Daraus lässt sich das Signal&nbsp; $y(t)$&nbsp;  durch Fourierrücktransformation gewinnen.  
*Bei stochastischen Signalen versagt diese Vorgehensweise, da dann die Zeitfunktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; nicht für alle Zeiten&nbsp; von ­$–∞$&nbsp; bis&nbsp; $+∞$&nbsp; vorhersagbar sind und somit die dazugehörigen Amplitudenspektren&nbsp; $X(f)$&nbsp; und&nbsp; $Y(f)$&nbsp; gar nicht existieren.  
+
*Bei stochastischen Signalen versagt diese Vorgehensweise, da dann die Zeitfunktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; nicht für alle Zeiten&nbsp; von ­$–∞$&nbsp; bis&nbsp; $+∞$&nbsp; vorhersagbar sind und die dazugehörigen Amplitudenspektren&nbsp; $X(f)$&nbsp; und&nbsp; $Y(f)$&nbsp; gar nicht existieren.&nbsp; In diesem Fall muss auf die&nbsp; [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektren]]&nbsp; übergegangen werden.
*In diesem Fall muss auf die im letzten Kapitel definierten&nbsp; [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektren]]&nbsp; übergegangen werden.
 
  
 
==Amplituden- und Leistungsdichtespektrum==
 
==Amplituden- und Leistungsdichtespektrum==
 
<br>
 
<br>
Wir betrachten einen ergodischen Zufallsprozess&nbsp;  $\{x(t)\}$, dessen Autokorrelationsfunktion&nbsp; $φ_x(τ)$&nbsp; als bekannt vorausgesetzt wird.&nbsp; Das Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$&nbsp; ist dann über die Fouriertransformation ebenfalls eindeutig bestimmt und es gelten die  folgenden Aussagen:  
+
Wir betrachten einen ergodischen Zufallsprozess&nbsp;  $\{x(t)\}$,&nbsp; dessen Autokorrelationsfunktion&nbsp; $φ_x(τ)$&nbsp; als bekannt vorausgesetzt wird.&nbsp; Das Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$&nbsp; ist dann über die Fouriertransformation ebenfalls eindeutig bestimmt und es gelten die  folgenden Aussagen:  
 
:[[Datei:P_ID467__Sto_T_5_1_S2_neu.png|right| |frame| Zur AKF&ndash; und LDS&ndash;Berechnung eines Zufallssignals]]
 
:[[Datei:P_ID467__Sto_T_5_1_S2_neu.png|right| |frame| Zur AKF&ndash; und LDS&ndash;Berechnung eines Zufallssignals]]
*Das Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$&nbsp; kann – ebenso wie die Autokorrelationsfunktion&nbsp; $φ_x(τ)$ – für jede einzelne Musterfunktion des stationären und ergodischen Zufallsprozesses&nbsp; $\{x(t)\}$&nbsp; angegeben werden, auch wenn der spezifische Verlauf von&nbsp; $x(t)$&nbsp; explizit nicht bekannt ist.  
+
<br>
*Das&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Amplitudenspektrum]]&nbsp; $X(f)$&nbsp; ist dagegen undefiniert, da bei Kenntnis der Spektralfunktion&nbsp; $X(f)$&nbsp; auch die gesamte Zeitfunktion&nbsp; $x(t)$&nbsp; von&nbsp; $–∞$&nbsp; bis&nbsp; $+∞$&nbsp; über die Fourierrücktransformation bekannt sein müsste, was bei einem stochastischen Signal eindeutig nicht der Fall sein kann.
+
#Das Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$&nbsp; kann&nbsp; – ebenso wie die Autokorrelationsfunktion&nbsp; $φ_x(τ)$ –&nbsp; für jede einzelne Musterfunktion des stationären und ergodischen Zufallsprozesses&nbsp; $\{x(t)\}$&nbsp; angegeben werden,&nbsp; auch wenn der spezifische Verlauf von&nbsp; $x(t)$&nbsp; explizit nicht bekannt ist.<br><br>
*Ist entsprechend der nebenstehenden Skizze ein Zeitausschnitt der endlichen Zeitdauer&nbsp; $T_{\rm M}$&nbsp; bekannt, so kann für diesen natürlich wieder die Fouriertransformation angewendet werden.
+
#Das&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Amplitudenspektrum]]&nbsp; $X(f)$&nbsp; ist dagegen undefiniert,&nbsp; da bei Kenntnis der Spektralfunktion&nbsp; $X(f)$&nbsp; auch die gesamte Zeitfunktion&nbsp; $x(t)$&nbsp; von&nbsp; $–∞$&nbsp; bis&nbsp; $+∞$&nbsp; über die Fourierrücktransformation bekannt sein müsste,&nbsp; was bei einem stochastischen Signal eindeutig nicht der Fall sein kann.<br><br>
 +
#Ist entsprechend der nebenstehenden Skizze ein Zeitausschnitt der endlichen Zeitdauer&nbsp; $T_{\rm M}$&nbsp; bekannt,&nbsp; so kann für diesen natürlich wieder die Fouriertransformation angewendet werden.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Zeile 69: Zeile 68:
 
\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm
 
\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm
 
M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
 
M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
*Es ist zulässig, die zeitlich unbegrenzte Funktion&nbsp; $x(t)$&nbsp; durch die auf den Zeitbereich&nbsp; $-T_{\rm M}/2$&nbsp; bis&nbsp; $+T_{\rm M}/2$&nbsp; begrenzte Funktion&nbsp; $x_{\rm T}(t)$&nbsp; zu ersetzen.&nbsp; $x_{\rm T}(t)$&nbsp; korrespondiert mit dem Spektrum&nbsp; $X_{\rm T}(f)$, und man erhält durch Anwendung des&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegrals]]&nbsp; und des&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]:  
+
*Es ist zulässig, die zeitlich unbegrenzte Funktion&nbsp; $x(t)$&nbsp; durch die auf den Zeitbereich&nbsp; $-T_{\rm M}/2$&nbsp; bis&nbsp; $+T_{\rm M}/2$&nbsp; begrenzte Funktion&nbsp; $x_{\rm T}(t)$&nbsp; zu ersetzen.&nbsp; $x_{\rm T}(t)$&nbsp; korrespondiert mit dem Spektrum&nbsp; $X_{\rm T}(f)$,&nbsp; und man erhält durch Anwendung des&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|ersten Fourierintegrals]]&nbsp; und des&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]:  
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
:$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}
 
\frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm
 
\frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm
Zeile 99: Zeile 98:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp; Das Leistungsdichtespektrum (LDS) am Ausgang eines linearen zeitinvarianten Systems mit dem Frequenzgang&nbsp; $H(f)$&nbsp; ergibt sich als das Produkt aus dem Eingangs–LDS&nbsp; ${\it Φ}_x(f)$&nbsp; und der &bdquo;Leistungsübertragungsfunktion&rdquo;&nbsp; $\vert H(f)\vert ^2$.
+
$\text{Satz:}$&nbsp; Das Leistungsdichtespektrum (LDS) am Ausgang eines linearen zeitinvarianten Systems mit dem Frequenzgang&nbsp; $H(f)$&nbsp; ergibt sich als das Produkt  
 +
*aus dem Eingangs–LDS&nbsp; ${\it Φ}_x(f)$&nbsp; und  
 +
*der &bdquo;Leistungsübertragungsfunktion&rdquo;&nbsp; $\vert H(f)\vert ^2$:
 
:$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$}}
 
:$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$}}
  
Zeile 106: Zeile 107:
 
$\text{Beweis:}$&nbsp;  Ausgegangen wird von den drei bereits vorher hergeleiteten Beziehungen:  
 
$\text{Beweis:}$&nbsp;  Ausgegangen wird von den drei bereits vorher hergeleiteten Beziehungen:  
 
:$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
 
:$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2, \hspace{0.5cm}
+
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2,$$
{ {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
+
:$$ { {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm}
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, \hspace{0.5cm}
+
\frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, $$
Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$
+
:$$Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$
Setzt man diese Gleichungen ineinander ein, so erhält man das obige Ergebnis.  
+
Setzt man diese Gleichungen ineinander ein,&nbsp; so erhält man das obige Ergebnis.  
 
<div align="right">'''q.e.d.'''</div>}}
 
<div align="right">'''q.e.d.'''</div>}}
  
Zeile 116: Zeile 117:
 
Das folgende Beispiel verdeutlicht den Zusammenhang bei Weißem Rauschen.
 
Das folgende Beispiel verdeutlicht den Zusammenhang bei Weißem Rauschen.
  
[[Datei:P_ID468__Sto_T_5_1_S3_neu.png |right|frame| Filtereinfluss im Frequenzbereich]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Beispiel 1:}$&nbsp;  
 
$\text{Beispiel 1:}$&nbsp;  
 
Am Eingang eines Gauß-Tiefpasses mit dem Frequenzgang  
 
Am Eingang eines Gauß-Tiefpasses mit dem Frequenzgang  
 
:$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
 
:$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
 +
[[Datei:P_ID468__Sto_T_5_1_S3_neu.png |right|frame| Filtereinfluss im Frequenzbereich]]
 
liegt weißes Rauschen&nbsp; $x(t)$&nbsp; mit der Rauschleistungsdichte&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$&nbsp; an &nbsp; &rArr; &nbsp; zweiseitige Darstellung.&nbsp; Dann gilt für das Leistungsdichtespektrum des Ausgangssignals:  
 
liegt weißes Rauschen&nbsp; $x(t)$&nbsp; mit der Rauschleistungsdichte&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$&nbsp; an &nbsp; &rArr; &nbsp; zweiseitige Darstellung.&nbsp; Dann gilt für das Leistungsdichtespektrum des Ausgangssignals:  
 
:$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta
 
:$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta
Zeile 126: Zeile 127:
 
Die Grafik zeigt die Signale und Leistungsdichtespektren am Filtereingang und &ndash;ausgang.  
 
Die Grafik zeigt die Signale und Leistungsdichtespektren am Filtereingang und &ndash;ausgang.  
  
''Anmerkungen:''
+
Anmerkungen:
#&nbsp; Das Signal&nbsp; $x(t)$&nbsp; kann – streng genommen – gar nicht gezeichnet werden, da es eine unendlich große Leistung besitzt &nbsp; &rArr; &nbsp; Integral über&nbsp; ${\it Φ}_x(f)$&nbsp; von&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$.  
+
#Das Signal&nbsp; $x(t)$&nbsp; kann – streng genommen – nicht gezeichnet werden, da es eine unendlich große Leistung besitzt &nbsp; &rArr; &nbsp; Integral über&nbsp; ${\it Φ}_x(f)$&nbsp; von&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$.  
#&nbsp; Das Ausgangssignal&nbsp; $y(t)$&nbsp; ist niederfrequenter als&nbsp; $x(t)$&nbsp; und besitzt eine endliche Leistung entsprechend dem Integral über&nbsp; ${\it Φ}_y(f)$.
+
#Das Ausgangssignal&nbsp; $y(t)$&nbsp; ist niederfrequenter als&nbsp; $x(t)$&nbsp; und besitzt eine endliche Leistung entsprechend dem Integral über&nbsp; ${\it Φ}_y(f)$.
#&nbsp; Bei einseitiger Darstellung würde (nur) für&nbsp; $f>0$ gelten:&nbsp; ${ {\it \Phi}_x(f)} =N_0$.&nbsp; Die Aussagen&nbsp; (1)&nbsp; und&nbsp; (2)&nbsp; würden auch hier in gleicher Weise gelten.}}  
+
#Bei einseitiger Darstellung würde&nbsp; (nur)&nbsp; für&nbsp; $f>0$ gelten:&nbsp; ${ {\it \Phi}_x(f)} =N_0$.&nbsp; Die Aussagen&nbsp; (1)&nbsp; und&nbsp; (2)&nbsp; würden auch hier in gleicher Weise gelten.}}  
  
 
==Autokorrelationsfunktion des Filterausgangssignals==
 
==Autokorrelationsfunktion des Filterausgangssignals==
 
<br>
 
<br>
Das berechnete Leistungsdichtespektrum (LDS) kann auch wie folgt geschrieben werden:  
+
Das berechnete Leistungsdichtespektrum&nbsp; $\rm (LDS)$&nbsp; kann auch wie folgt geschrieben werden:  
 
:$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f)$$
 
:$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f)$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp;  Für die zugehörige Autokorrelationsfunktion (AKF) erhält man dann entsprechend den&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; und durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungssatzes]]:  
+
$\text{Satz:}$&nbsp;  Für die Autokorrelationsfunktion&nbsp; $\rm (AKF)$&nbsp; erhält man nach den&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; und durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungssatzes]]:  
 
:$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(-
 
:$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(-
 
\tau).$$}}
 
\tau).$$}}
Zeile 143: Zeile 144:
 
   
 
   
 
Beim Übergang vom Spektral– in den Zeitbereich ist zu beachten:
 
Beim Übergang vom Spektral– in den Zeitbereich ist zu beachten:
* Einzusetzen sind jeweils die Fourierrücktransformierten, nämlich  
+
* Einzusetzen sind jeweils die Fourierrücktransformierten,&nbsp; nämlich  
 
:$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}$$
 
:$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}$$
 
*Zudem wird aus jeder Multiplikation eine Faltungsoperation.  
 
*Zudem wird aus jeder Multiplikation eine Faltungsoperation.  
  
  
[[Datei:P_ID591__Sto_T_5_1_S4_neu.png |right|frame| Filtereinfluss im Zeitbereich]]
+
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Beispiel 2:}$&nbsp;  
 
$\text{Beispiel 2:}$&nbsp;  
Wir betrachten nochmals das gleiche Szenario wie&nbsp; im $\text{Beispiel 1}$, aber diesmal im Zeitbereich:
+
Wir betrachten nochmals das gleiche Szenario wie&nbsp; im $\text{Beispiel 1}$, aber diesmal im Zeitbereich. Es gilt auch hier:
*weißes Rauschen&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$,
+
[[Datei:P_ID591__Sto_T_5_1_S4_neu.png |right|frame| Filtereinfluss im Zeitbereich]]
 +
*Zweiseitiges weißes Rauschen&nbsp; ${ {\it \Phi}_x(f)} =N_0/2$,
  
 
*gaußförmiges Filter: &nbsp; $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
*gaußförmiges Filter: &nbsp; $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Zeile 159: Zeile 161:
  
 
Man erkennt aus dieser Darstellung:  
 
Man erkennt aus dieser Darstellung:  
#&nbsp; Die AKF des Eingangssignals ist nun eine Diracfunktion mit dem Gewicht&nbsp; $N_0/2$.  
+
#Die AKF des Eingangssignals ist nun eine Diracfunktion mit dem Gewicht&nbsp; $N_0/2$.  
#&nbsp; Durch zweimalige Faltung mit der (hier ebenfalls gaußförmigen) Impulsantwort&nbsp; $h(t)$&nbsp; bzw.&nbsp; $h(–t)$&nbsp; erhält man die AKF&nbsp; $φ_y(τ)$&nbsp; des Ausgangssignals.  
+
#Durch zweimalige Faltung mit der&nbsp; (hier ebenfalls gaußförmigen)&nbsp; Impulsantwort&nbsp; $h(t)$&nbsp; bzw.&nbsp; $h(–t)$&nbsp; erhält man die AKF&nbsp; $φ_y(τ)$&nbsp; des Ausgangssignals.  
#&nbsp; Auch die AKF&nbsp; $φ_y(τ)$&nbsp; des Ausgangssignals ist also gaußförmig.  
+
#Auch die AKF&nbsp; $φ_y(τ)$&nbsp; des Ausgangssignals ist also gaußförmig.  
#&nbsp; Der AKF–Wert bei&nbsp; $τ = 0$&nbsp; ist identisch mit der Fläche des Leistungsdichtespektrums&nbsp; ${\it Φ}_y(f)$&nbsp; und kennzeichnet die Signalleistung (Varianz)&nbsp; $σ_y^2$.  
+
#Der AKF–Wert bei&nbsp; $τ = 0$&nbsp; ist gleich der Fläche des Leistungsdichtespektrums&nbsp; ${\it Φ}_y(f)$&nbsp; und kennzeichnet die Signalleistung&nbsp; (Varianz)&nbsp; $σ_y^2$.  
#&nbsp; Dagegen ergibt die Fläche unter&nbsp; $φ_y(τ)$&nbsp; den LDS-Wert&nbsp; ${\it Φ}_y(f = \rm 0)$, also&nbsp; $N_0/2$. }}
+
#Dagegen ergibt die Fläche unter&nbsp; $φ_y(τ)$&nbsp; den LDS-Wert&nbsp; ${\it Φ}_y(f = \rm 0)$,&nbsp; also&nbsp; $N_0/2$. }}
  
 
==Kreuzkorrelationsfunktion zwischen Eingangs- und Ausgangssignal==
 
==Kreuzkorrelationsfunktion zwischen Eingangs- und Ausgangssignal==
 
<br>
 
<br>
 
[[Datei:P_ID469__Sto_T_5_1_S5_Ganz_neu.png |frame| Zur Berechnung der Kreuzkorrelationsfunktion |right]]
 
[[Datei:P_ID469__Sto_T_5_1_S5_Ganz_neu.png |frame| Zur Berechnung der Kreuzkorrelationsfunktion |right]]
Wir betrachten wieder ein Filter mit dem Frequenzgang&nbsp; $H(f)$&nbsp; und der Impulsantwort&nbsp; $h(t)$.&nbsp; Weiter gilt:  
+
Wir betrachten wieder ein Filter mit dem Frequenzgang&nbsp; $H(f)$&nbsp; und der Impulsantwort&nbsp; $h(t)$.&nbsp; Weiter gilt:
*Das stochastische Eingangssignal&nbsp; $x(t)$&nbsp; ist eine Musterfunktion des ergodischen Zufallsprozesses&nbsp;  $\{x(t)\}$.  
+
<br>
*Die zugehörige Autokorrelationsfunktion (AKF) am Filtereingang ist somit&nbsp; $φ_x(τ)$, während das Leistungsdichtespektrum (LDS) mit&nbsp;  ${\it Φ}_x(f)$&nbsp; bezeichnet wird.
+
#Das stochastische Eingangssignal&nbsp; $x(t)$&nbsp; ist eine Musterfunktion des ergodischen Zufallsprozesses&nbsp;  $\{x(t)\}$.<br><br>
*Die entsprechenden Beschreibungsgrößen des ergodischen Zufallsprozesses&nbsp;  $\{y(t)\}$&nbsp; am Filterausgang sind die Musterfunktion&nbsp; $y(t)$, die Autokorrelationsfunktion&nbsp; $φ_y(τ)$&nbsp; sowie das Leitsungsdichtespektrum&nbsp;  ${\it Φ}_y(f)$.
+
#Die zugehörige Autokorrelationsfunktion&nbsp; $\rm (AKF)$&nbsp; am Filtereingang ist somit&nbsp; $φ_x(τ)$, während das Leistungsdichtespektrum&nbsp; $\rm (LDS)$&nbsp; mit&nbsp;  ${\it Φ}_x(f)$&nbsp; bezeichnet wird.<br><br>
 +
#Die entsprechenden Beschreibungsgrößen des ergodischen Zufallsprozesses&nbsp;  $\{y(t)\}$&nbsp; am Filterausgang sind  
 +
::*die Musterfunktion&nbsp; $y(t)$,  
 +
::*die Autokorrelationsfunktion&nbsp; $φ_y(τ)$&nbsp; sowie  
 +
::*das Leitsungsdichtespektrum&nbsp;  ${\it Φ}_y(f)$.
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp;  Für die&nbsp; '''Kreuzkorrelationsfunktion'''&nbsp; (KKF) zwischen dem Eingangs– und dem Ausgangssignal gilt:
+
$\text{Satz:}$&nbsp;  Für die&nbsp; '''Kreuzkorrelationsfunktion'''&nbsp; $\rm (KKF)$&nbsp; zwischen dem Eingangs– und dem Ausgangssignal gilt:
 
:$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$  
 
:$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)}  .$$  
 
Hierbei bezeichnet&nbsp;  $h(τ)$&nbsp; die Impulsantwort des Filters&nbsp; $($mit der Zeitvariablen&nbsp; $τ$&nbsp; anstelle von&nbsp; $t)$&nbsp; und&nbsp; ${ {\it \varphi}_{x}(\tau)}$&nbsp; die AKF des Eingangssignals.}}
 
Hierbei bezeichnet&nbsp;  $h(τ)$&nbsp; die Impulsantwort des Filters&nbsp; $($mit der Zeitvariablen&nbsp; $τ$&nbsp; anstelle von&nbsp; $t)$&nbsp; und&nbsp; ${ {\it \varphi}_{x}(\tau)}$&nbsp; die AKF des Eingangssignals.}}
Zeile 200: Zeile 206:
 
:$${ {\it \Phi}_{xy}(f)} =  H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$
 
:$${ {\it \Phi}_{xy}(f)} =  H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$
  
Diese Gleichung zeigt, dass der Filterfrequenzgang&nbsp; $H(f)$&nbsp; aus einer Messung mit stochastischer Anregung vollständig – also sowohl der Betrag als auch die Phase – berechnet werden kann, wenn folgende Beschreibungsgrößen ermittelt werden:  
+
Diese Gleichung zeigt,&nbsp; dass der Filterfrequenzgang&nbsp; $H(f)$&nbsp; aus einer Messung mit stochastischer Anregung vollständig&nbsp; – also sowohl der Betrag als auch die Phase –&nbsp; berechnet werden kann,&nbsp; wenn folgende Beschreibungsgrößen ermittelt werden:  
 
*die statistischen Kenngrößen am Eingang, entweder die AKF&nbsp; $φ_x(τ)$&nbsp; oder das&nbsp; LDS ${\it Φ}_x(f)$,  
 
*die statistischen Kenngrößen am Eingang, entweder die AKF&nbsp; $φ_x(τ)$&nbsp; oder das&nbsp; LDS ${\it Φ}_x(f)$,  
 
*sowie die Kreuzkorrelationsfunktion&nbsp; $φ_{xy}(τ)$&nbsp; bzw. deren Fouriertransformierte&nbsp; ${\it Φ}_{xy}(f)$. }}
 
*sowie die Kreuzkorrelationsfunktion&nbsp; $φ_{xy}(τ)$&nbsp; bzw. deren Fouriertransformierte&nbsp; ${\it Φ}_{xy}(f)$. }}

Version vom 26. Januar 2022, 15:59 Uhr

# ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL #


Dieses Kapitel beschreibt den Einfluss eines Filters auf die  »Autokorrelationsfunktion«  $\rm (AKF)$  und das  »Leistungsdichtespektrum«  $\rm (LDS)$  stochastischer Signale.

Im Einzelnen werden behandelt:

  • die  »Berechnung von AKF und LDS«  am Filterausgang  ("Stochastische Systemtheorie"),
  • die Struktur und die Darstellung  »Digitaler Filter«  (nichrekursiv und rekursiv),
  • die  »Dimensionierung der Filterkoeffizienten«  für eine vorgegebene AKF,
  • die Bedeutung des  »Matched-Filters«  für die SNR-Maximierung von Nachrichtensystemen,
  • die Eigenschaften des  »Wiener-Kolmogorow-Filters«  zur Signalrekonstruktion.


Weitere Informationen zum Thema „Filterung stochastischer Signale” sowie Aufgaben, Simulationen und Programmierübungen finden Sie im

  • Kapitel 10:   Filterung stochastischer Signale (Programm fil)
  • Kapitel 11:   Optimale Filter (Programm ofi)


des Praktikums „Simulationsmethoden in der Nachrichtentechnik”.  Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf

  • dem Lehrsoftwarepaket  LNTsim   ⇒   Link verweist auf die ZIP-Version des Programms, und
  • der  Praktikumsanleitung - Teil B   ⇒   Link verweist auf die PDF-Version mit Kapitel 10:  Seite 229-248 und Kapitel 11:  Seite 249-270.


Systemmodell und Problemstellung


Wir betrachten wie im Buch  Lineare zeitinvariante Systeme  die rechts skizzierte Anordnung,  wobei das System

  • sowohl durch die Impulsantwort  $h(t)$
  • als auch durch seinen Frequenzgang  $H(f)$


eindeutig beschrieben ist.  Der Zusammenhang zwischen diesen Beschreibungsgrößen im Zeit– und Frequenzbereich ist durch die  Fouriertransformation  gegeben.

Filtereinfluss auf Spektrum und Leistungsdichtespektrum (LDS)


Legt man an den Eingang das Signal  $x(t)$  an und bezeichnet das Ausgangssignal mit  $y(t)$,  so liefert die klassische Systemtheorie folgende Aussagen:

  • Das Ausgangssignal  $y(t)$  ergibt sich aus der  Faltung  zwischen dem Eingangssignal  $x(t)$  und der Impulsantwort  $h(t)$.  Die folgende Gleichung gilt für deterministische und stochastische Signale gleichermaßen:
$$y(t) = x(t) \ast h(t) = \int_{-\infty}^{+\infty} x(\tau)\cdot h ( t - \tau) \,\,{\rm d}\tau.$$
  • Bei deterministischen Signalen geht man meist den Umweg über die Spektralfunktionen.  Das Spektrum  $X(f)$  ist die Fouriertransformierte von  $x(t)$.  Die Multiplikation mit dem Frequenzgang  $H(f)$  führt zum Ausgangsspektrum  $Y(f)$.  Daraus lässt sich das Signal  $y(t)$  durch Fourierrücktransformation gewinnen.
  • Bei stochastischen Signalen versagt diese Vorgehensweise, da dann die Zeitfunktionen  $x(t)$  und  $y(t)$  nicht für alle Zeiten  von ­$–∞$  bis  $+∞$  vorhersagbar sind und die dazugehörigen Amplitudenspektren  $X(f)$  und  $Y(f)$  gar nicht existieren.  In diesem Fall muss auf die  Leistungsdichtespektren  übergegangen werden.

Amplituden- und Leistungsdichtespektrum


Wir betrachten einen ergodischen Zufallsprozess  $\{x(t)\}$,  dessen Autokorrelationsfunktion  $φ_x(τ)$  als bekannt vorausgesetzt wird.  Das Leistungsdichtespektrum  ${\it Φ}_x(f)$  ist dann über die Fouriertransformation ebenfalls eindeutig bestimmt und es gelten die folgenden Aussagen:

Zur AKF– und LDS–Berechnung eines Zufallssignals


  1. Das Leistungsdichtespektrum  ${\it Φ}_x(f)$  kann  – ebenso wie die Autokorrelationsfunktion  $φ_x(τ)$ –  für jede einzelne Musterfunktion des stationären und ergodischen Zufallsprozesses  $\{x(t)\}$  angegeben werden,  auch wenn der spezifische Verlauf von  $x(t)$  explizit nicht bekannt ist.

  2. Das  Amplitudenspektrum  $X(f)$  ist dagegen undefiniert,  da bei Kenntnis der Spektralfunktion  $X(f)$  auch die gesamte Zeitfunktion  $x(t)$  von  $–∞$  bis  $+∞$  über die Fourierrücktransformation bekannt sein müsste,  was bei einem stochastischen Signal eindeutig nicht der Fall sein kann.

  3. Ist entsprechend der nebenstehenden Skizze ein Zeitausschnitt der endlichen Zeitdauer  $T_{\rm M}$  bekannt,  so kann für diesen natürlich wieder die Fouriertransformation angewendet werden.


$\text{Satz:}$  Zwischen dem Leistungsdichtespektrum  ${\it Φ}_x(f)$  des zeitlich unendlich ausgedehnten Zufallssignals  $x(t)$  und dem Amplitudenspektrum  $X_{\rm T}(f)$  des begrenzten Zeitausschnittes  $x_{\rm T}(t)$  besteht der folgende Zusammenhang:

$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert ^2.$$


$\text{Beweis:}$  Vorne wurde die  Autokorrelationsfunktion  eines ergodischen Prozesses mit der Musterfunktion  $x(t)$  wie folgt angegeben:

$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau)\hspace{0.1cm} \rm d \it t.$$
  • Es ist zulässig, die zeitlich unbegrenzte Funktion  $x(t)$  durch die auf den Zeitbereich  $-T_{\rm M}/2$  bis  $+T_{\rm M}/2$  begrenzte Funktion  $x_{\rm T}(t)$  zu ersetzen.  $x_{\rm T}(t)$  korrespondiert mit dem Spektrum  $X_{\rm T}(f)$,  und man erhält durch Anwendung des  ersten Fourierintegrals  und des  Verschiebungssatzes:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot {\rm e}^{ {\rm j}2 \pi f ( t + \tau) } \hspace{0.1cm} \rm d \it f \hspace{0.1cm} \rm d \it t.$$
  • Nach Aufspalten des Exponenten und Vertauschen von Zeit- und Frequenzintegral ergibt sich:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}X_{\rm T}(f)\cdot \left[ \int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x_{\rm T}(t)\cdot {\rm e}^{ {\rm j}2 \pi f t } \hspace{0.1cm} \rm d \it t \right] \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
  • Das innere Integral beschreibt das konjugiert–komplexe Spektrum  $X_{\rm T}^{\star}(f)$.  Daraus folgt weiter:
$${ {\it \varphi}_x(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \int^{+\infty}_{-\infty}\vert X_{\rm T}(f)\vert^2 \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f.$$
  • Ein Vergleich mit dem bei Ergodizität stets gültigen Theorem von  Wiener  und  Chintchin,
$${ {\it \varphi}_x(\tau)} = \int^{+\infty}_{-\infty}{\it \Phi}_x(f) \cdot {\rm e}^{ {\rm j}2 \pi f \tau} \hspace{0.1cm} \rm d \it f ,$$
zeigt die Gültigkeit der oben genannten Beziehung:
$${ {\it \Phi}_x(f)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} }\cdot \vert X_{\rm T}(f)\vert^2.$$
q.e.d.

Leistungsdichtespektrum des Filterausgangssignals


Kombiniert man die in den beiden letzten Abschnitten gemachten Aussagen, so kommt man zu folgendem wichtigen Ergebnis:

$\text{Satz:}$  Das Leistungsdichtespektrum (LDS) am Ausgang eines linearen zeitinvarianten Systems mit dem Frequenzgang  $H(f)$  ergibt sich als das Produkt

  • aus dem Eingangs–LDS  ${\it Φ}_x(f)$  und
  • der „Leistungsübertragungsfunktion”  $\vert H(f)\vert ^2$:
$${ {\it \Phi}_y(f)} = { {\it \Phi}_x(f)} \cdot \vert H(f)\vert ^2.$$


$\text{Beweis:}$  Ausgegangen wird von den drei bereits vorher hergeleiteten Beziehungen:

$${ {\it \Phi}_x(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm} \vert X_{\rm T}(f)\vert^2,$$
$$ { {\it \Phi}_y(f)} =\hspace{-0.1cm} \lim_{T_{\rm M}\to\infty}\hspace{0.01cm} \frac{1}{ T_{\rm M} }\hspace{-0.05cm}\cdot\hspace{-0.05cm}\vert Y_{\rm T}(f)\vert^2, $$
$$Y_{\rm T}(f) = X_{\rm T}(f) \hspace{-0.05cm}\cdot\hspace{-0.05cm} H(f).$$

Setzt man diese Gleichungen ineinander ein,  so erhält man das obige Ergebnis.

q.e.d.


Das folgende Beispiel verdeutlicht den Zusammenhang bei Weißem Rauschen.

$\text{Beispiel 1:}$  Am Eingang eines Gauß-Tiefpasses mit dem Frequenzgang

$$H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}$$
Filtereinfluss im Frequenzbereich

liegt weißes Rauschen  $x(t)$  mit der Rauschleistungsdichte  ${ {\it \Phi}_x(f)} =N_0/2$  an   ⇒   zweiseitige Darstellung.  Dann gilt für das Leistungsdichtespektrum des Ausgangssignals:

$${ {\it \Phi}_y(f)} = \frac {N_0}{2} \cdot {\rm e}^{- 2 \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}.$$

Die Grafik zeigt die Signale und Leistungsdichtespektren am Filtereingang und –ausgang.

Anmerkungen:

  1. Das Signal  $x(t)$  kann – streng genommen – nicht gezeichnet werden, da es eine unendlich große Leistung besitzt   ⇒   Integral über  ${\it Φ}_x(f)$  von  $-\infty$  bis  $+\infty$.
  2. Das Ausgangssignal  $y(t)$  ist niederfrequenter als  $x(t)$  und besitzt eine endliche Leistung entsprechend dem Integral über  ${\it Φ}_y(f)$.
  3. Bei einseitiger Darstellung würde  (nur)  für  $f>0$ gelten:  ${ {\it \Phi}_x(f)} =N_0$.  Die Aussagen  (1)  und  (2)  würden auch hier in gleicher Weise gelten.

Autokorrelationsfunktion des Filterausgangssignals


Das berechnete Leistungsdichtespektrum  $\rm (LDS)$  kann auch wie folgt geschrieben werden:

$${{\it \Phi}_y(f)} = {{\it \Phi}_x(f)} \cdot H(f) \cdot H^{\star}(f)$$

$\text{Satz:}$  Für die Autokorrelationsfunktion  $\rm (AKF)$  erhält man nach den  Gesetzmäßigkeiten der Fouriertransformation  und durch Anwendung des  Faltungssatzes:

$${ {\it \varphi}_y(\tau)} = { {\it \varphi}_x(\tau)} \ast h(\tau)\ast h(- \tau).$$


Beim Übergang vom Spektral– in den Zeitbereich ist zu beachten:

  • Einzusetzen sind jeweils die Fourierrücktransformierten,  nämlich
$${{\it \varphi}_y(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{{\it \Phi}_y(f)}, \hspace{0.5cm}{{\it \varphi}_x(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{{\it \Phi}_x(f)}, \hspace{0.5cm}{h(\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\bullet\,{H(f)}, \hspace{0.5cm}{h(-\tau)} \circ\hspace{0.05cm}\!\!\!-\!\!\!-\!\!\!-\!\!\!\bullet\,{H^{\star}(f)}$$
  • Zudem wird aus jeder Multiplikation eine Faltungsoperation.


$\text{Beispiel 2:}$  Wir betrachten nochmals das gleiche Szenario wie  im $\text{Beispiel 1}$, aber diesmal im Zeitbereich. Es gilt auch hier:

Filtereinfluss im Zeitbereich
  • Zweiseitiges weißes Rauschen  ${ {\it \Phi}_x(f)} =N_0/2$,
  • gaußförmiges Filter:   $H(f) = {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(f/\Delta f)^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} h(t) = \Delta f \cdot {\rm e}^{- \pi \hspace{0.03cm}\cdot \hspace{0.03cm}(\Delta f \hspace{0.03cm}\cdot \hspace{0.03cm}t)^2}.$


Man erkennt aus dieser Darstellung:

  1. Die AKF des Eingangssignals ist nun eine Diracfunktion mit dem Gewicht  $N_0/2$.
  2. Durch zweimalige Faltung mit der  (hier ebenfalls gaußförmigen)  Impulsantwort  $h(t)$  bzw.  $h(–t)$  erhält man die AKF  $φ_y(τ)$  des Ausgangssignals.
  3. Auch die AKF  $φ_y(τ)$  des Ausgangssignals ist also gaußförmig.
  4. Der AKF–Wert bei  $τ = 0$  ist gleich der Fläche des Leistungsdichtespektrums  ${\it Φ}_y(f)$  und kennzeichnet die Signalleistung  (Varianz)  $σ_y^2$.
  5. Dagegen ergibt die Fläche unter  $φ_y(τ)$  den LDS-Wert  ${\it Φ}_y(f = \rm 0)$,  also  $N_0/2$.

Kreuzkorrelationsfunktion zwischen Eingangs- und Ausgangssignal


Zur Berechnung der Kreuzkorrelationsfunktion

Wir betrachten wieder ein Filter mit dem Frequenzgang  $H(f)$  und der Impulsantwort  $h(t)$.  Weiter gilt:

  1. Das stochastische Eingangssignal  $x(t)$  ist eine Musterfunktion des ergodischen Zufallsprozesses  $\{x(t)\}$.

  2. Die zugehörige Autokorrelationsfunktion  $\rm (AKF)$  am Filtereingang ist somit  $φ_x(τ)$, während das Leistungsdichtespektrum  $\rm (LDS)$  mit  ${\it Φ}_x(f)$  bezeichnet wird.

  3. Die entsprechenden Beschreibungsgrößen des ergodischen Zufallsprozesses  $\{y(t)\}$  am Filterausgang sind
  • die Musterfunktion  $y(t)$,
  • die Autokorrelationsfunktion  $φ_y(τ)$  sowie
  • das Leitsungsdichtespektrum  ${\it Φ}_y(f)$.


$\text{Satz:}$  Für die  Kreuzkorrelationsfunktion  $\rm (KKF)$  zwischen dem Eingangs– und dem Ausgangssignal gilt:

$${ {\it \varphi}_{xy}(\tau)} = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$

Hierbei bezeichnet  $h(τ)$  die Impulsantwort des Filters  $($mit der Zeitvariablen  $τ$  anstelle von  $t)$  und  ${ {\it \varphi}_{x}(\tau)}$  die AKF des Eingangssignals.


$\text{Beweis:}$  Allgemein gilt für die Kreuzkorrelationsfunktion zwischen zwei Signalen  $x(t)$  und  $y(t)$:

$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot y(t + \tau)\hspace{0.1cm} \rm d \it t.$$
  • Mit der allgemeingültigen Beziehung  $y(t) = h(t) \ast x(t)$  und der formalen Integrationsvariablen  $θ$  lässt sich hierfür auch schreiben:
$${ {\it \varphi}_{xy}(\tau)} = \lim_{T_{\rm M}\to\infty}\hspace{0.2cm}\frac{1}{ T_{\rm M} }\cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot \int^{+\infty}_{-\infty} h(\theta) \cdot x(t + \tau - \theta)\hspace{0.1cm}{\rm d}\theta\hspace{0.1cm}{\rm d} \it t.$$
  • Durch Vertauschen der beiden Integrale und Hereinziehen der Grenzwertbildung in das Integral erhält man:
$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty} h(\theta) \cdot \left[ \lim_{T_{\rm M}\to\infty}\hspace{0.2cm} \frac{1}{ T_{\rm M} } \cdot\int^{+T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\cdot x(t + \tau - \theta)\hspace{0.1cm} \hspace{0.1cm} {\rm d} t \right]{\rm d}\theta.$$
  • Der Ausdruck in den eckigen Klammern ergibt den AKF-Wert am Eingang zum Zeitpunkt  $τ - θ$:
$${ {\it \varphi}_{xy}(\tau)} = \int^{+\infty}_{-\infty}h(\theta) \cdot \varphi_x(\tau - \theta)\hspace{0.1cm}\hspace{0.1cm} {\rm d}\theta = h(\tau)\ast { {\it \varphi}_x(\tau)} .$$
  • Das verbleibende Integral beschreibt aber die Faltungsoperation in ausführlicher Schreibweise.
q.e.d.


$\text{Fazit:}$  Im Frequenzbereich lautet die entsprechende Gleichung:

$${ {\it \Phi}_{xy}(f)} = H(f)\cdot{ {\it \Phi}_x(f)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f) = \frac{ {\it \Phi}_{xy}(f)}{ {\it \Phi}_{x}(f)}.$$

Diese Gleichung zeigt,  dass der Filterfrequenzgang  $H(f)$  aus einer Messung mit stochastischer Anregung vollständig  – also sowohl der Betrag als auch die Phase –  berechnet werden kann,  wenn folgende Beschreibungsgrößen ermittelt werden:

  • die statistischen Kenngrößen am Eingang, entweder die AKF  $φ_x(τ)$  oder das  LDS ${\it Φ}_x(f)$,
  • sowie die Kreuzkorrelationsfunktion  $φ_{xy}(τ)$  bzw. deren Fouriertransformierte  ${\it Φ}_{xy}(f)$.

Aufgaben zum Kapitel


Aufgabe 5.1: Gaußsche AKF und Gaußtiefpass

Aufgabe 5.1Z: $\cos^2$-Rauschbegrenzung

Aufgabe 5.2: Bestimmung des Frequenzgangs

Aufgabe 5.2Z: Zweiwegekanal