Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Systemtheoretische Grundlagen |Vorherige Seite=Systembeschreibung im Zeitbereich |Nächste Seite=Klassifizierung der Verzerrungen }} ==A…“)
 
Zeile 17: Zeile 17:
 
*Aus jeder Tiefpassfunktion lassen sich entsprechende Hochpassfunktionen ableiten, wie auf der letzten Theorieseite  dieses Abschnitts gezeigt wird.  
 
*Aus jeder Tiefpassfunktion lassen sich entsprechende Hochpassfunktionen ableiten, wie auf der letzten Theorieseite  dieses Abschnitts gezeigt wird.  
  
 +
==Idealer Tiefpass – Küpfmüller–Tiefpass (1)==
 +
{{Definition}}
 +
Definition: Man bezeichnet einen Tiefpass als ideal, wenn sein Frequenzgang wie folgt lautet:
 +
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1  \\  0.5 \\\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad\begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,}  \\{\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,}  \\{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\\end{array}$$
 +
Wir verwenden teilweise auch die Bezeichnung „Küpfmüller-Tiefpass” (KTP) in Erinnerung an den Pionier der Systemtheorie, Karl Küpfmüller.
 +
{{end}}
  
 +
Die Grafik zeigt einen solchen idealen Tiefpass im Frequenz– und Zeitbereich.
 +
 +
[[Datei:P_ID842__LZI_T_1_3_S2_neu.png |400px | Idealer Tiefpass und Impulsantwort]]
 +
 +
Man erkennt aus diesem Kurvenverläufen:
 +
*Aufgrund des abrupten, unendlich steilen Flankenabfalls ist hier die 3dB–Grenzfrequenz $f_G$ genau halb so groß wie die systemtheoretische Bandbreite $Δf$.
 +
*Alle Spektralanteile mit $f$ < $f_G$ werden unverfälscht durchgelassen (Durchlassbereich), alle Anteile mit $f$ > $f_G$ vollständig unterdrückt (Sperrbereich). Bei $f$ = $f_G$ gilt $H(f)$ = 0.5.
 +
''Hinweis:'' Die Beschreibung im Zeitbereich finden Sie nachfolgend.
  
  

Version vom 1. Mai 2016, 11:34 Uhr

Allgemeine Bemerkungen

Alle auf den nächsten Seiten beschriebenen Tiefpassfunktionen weisen die folgenden Eigenschaften auf:

  • Der Frequenzgang $H(f)$ ist stets reell und gerade, so dass nach dem Zuordnungssatz auch die zugehörige Impulsantwort $h(t)$ stets reell und gerade ist.
  • Damit ist offensichtlich, dass die hier betrachteten Systeme akausal und somit nicht realisierbar sind. Die Beschreibung kausaler Systeme erfolgt im Kapitel 3 dieses Buches.
  • Der Vorteil dieser systemtheoretischen Filterfunktionen ist die einfache Beschreibung durch maximal zwei Parameter, so dass der Filtereinfluss durchschaubar dargestellt werden kann.
  • Der wichtigste Funktionsparameter ist die äquivalente Bandbreite entsprechend der Definition über das flächengleiche Rechteck:

$$\Delta f = \frac{1}{H(f=0)}\cdot \int\limits_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$

  • Nach dem so genannten Reziprozitätsgesetz liegt somit auch die äquivalente Zeitdauer der Impulsantwort fest, die ebenfalls über das flächengleiche Rechteck definiert ist:

$$\Delta t = \frac{1}{h(t=0)}\cdot \int\limits_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$

  • Der Gleichsignalübertragungsfaktor wird – wenn nicht explizit etwas Anderes vermerkt ist – stets zu $H(f$ = 0) = 1 angenommen.
  • Aus jeder Tiefpassfunktion lassen sich entsprechende Hochpassfunktionen ableiten, wie auf der letzten Theorieseite dieses Abschnitts gezeigt wird.

Idealer Tiefpass – Küpfmüller–Tiefpass (1)

Definition: Man bezeichnet einen Tiefpass als ideal, wenn sein Frequenzgang wie folgt lautet: $$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ 0.5 \\\hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad\begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\{\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\\end{array}$$ Wir verwenden teilweise auch die Bezeichnung „Küpfmüller-Tiefpass” (KTP) in Erinnerung an den Pionier der Systemtheorie, Karl Küpfmüller.

Die Grafik zeigt einen solchen idealen Tiefpass im Frequenz– und Zeitbereich.

Idealer Tiefpass und Impulsantwort

Man erkennt aus diesem Kurvenverläufen:

  • Aufgrund des abrupten, unendlich steilen Flankenabfalls ist hier die 3dB–Grenzfrequenz $f_G$ genau halb so groß wie die systemtheoretische Bandbreite $Δf$.
  • Alle Spektralanteile mit $f$ < $f_G$ werden unverfälscht durchgelassen (Durchlassbereich), alle Anteile mit $f$ > $f_G$ vollständig unterdrückt (Sperrbereich). Bei $f$ = $f_G$ gilt $H(f)$ = 0.5.

Hinweis: Die Beschreibung im Zeitbereich finden Sie nachfolgend.