Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen: Unterschied zwischen den Versionen
Zeile 23: | Zeile 23: | ||
Wir verwenden teilweise auch die Bezeichnung „Küpfmüller-Tiefpass” (KTP) in Erinnerung an den Pionier der Systemtheorie, Karl Küpfmüller. | Wir verwenden teilweise auch die Bezeichnung „Küpfmüller-Tiefpass” (KTP) in Erinnerung an den Pionier der Systemtheorie, Karl Küpfmüller. | ||
{{end}} | {{end}} | ||
+ | |||
Die Grafik zeigt einen solchen idealen Tiefpass im Frequenz– und Zeitbereich. | Die Grafik zeigt einen solchen idealen Tiefpass im Frequenz– und Zeitbereich. | ||
− | [[Datei:P_ID842__LZI_T_1_3_S2_neu.png | | + | [[Datei:P_ID842__LZI_T_1_3_S2_neu.png |500px | Idealer Tiefpass und Impulsantwort]] |
Man erkennt aus diesem Kurvenverläufen: | Man erkennt aus diesem Kurvenverläufen: | ||
*Aufgrund des abrupten, unendlich steilen Flankenabfalls ist hier die 3dB–Grenzfrequenz $f_G$ genau halb so groß wie die systemtheoretische Bandbreite $Δf$. | *Aufgrund des abrupten, unendlich steilen Flankenabfalls ist hier die 3dB–Grenzfrequenz $f_G$ genau halb so groß wie die systemtheoretische Bandbreite $Δf$. | ||
*Alle Spektralanteile mit $f$ < $f_G$ werden unverfälscht durchgelassen (Durchlassbereich), alle Anteile mit $f$ > $f_G$ vollständig unterdrückt (Sperrbereich). Bei $f$ = $f_G$ gilt $H(f)$ = 0.5. | *Alle Spektralanteile mit $f$ < $f_G$ werden unverfälscht durchgelassen (Durchlassbereich), alle Anteile mit $f$ > $f_G$ vollständig unterdrückt (Sperrbereich). Bei $f$ = $f_G$ gilt $H(f)$ = 0.5. | ||
+ | |||
''Hinweis:'' Die Beschreibung im Zeitbereich finden Sie nachfolgend. | ''Hinweis:'' Die Beschreibung im Zeitbereich finden Sie nachfolgend. | ||
+ | |||
+ | ==Idealer Tiefpass – Küpfmüller–Tiefpass (2)== | ||
+ | Kommen wir nun zur Beschreibung des idealen Tiefpasses im Zeitbereich: | ||
+ | *Die Impulsantwort ergibt sich entsprechend der Fourierrücktransformation zu | ||
+ | $$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm si}(x) =\frac{\sin(x)}{x}.$$ | ||
+ | *Die beidseitig bis ins Unendliche ausgedehnte Zeitfunktion weist äquidistante Nulldurchgänge im Abstand $Δt$ = 1/$Δf$ auf (siehe rechte untere Grafik). | ||
+ | |||
+ | *Der asymptotische Abfall erfolgt umgekehrt proportional mit der Zeit: | ||
+ | $$$$ | ||
+ | *Daraus folgt, dass die Impulsantwort erst für Zeiten $t$ > $t_1_‰$ = 318 · $Δt$ mit Sicherheit kleiner als 1‰ des Impulsmaximums ist. | ||
+ | *Die Sprungantwort ergibt sich aus der Impulsantwort durch Integration und lautet: | ||
+ | $${\rm \sigma}(t) = \int\limits_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$ | ||
+ | *Hierbei ist die so genannte Integral–Sinusfunktion | ||
+ | $${\rm Si}(x) = \int\limits_{ 0 }^{ x } {{\rm si} ( \xi )} \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+ ...$$ | ||
+ | :verwendet, die folgende Eigenschaften besitzt: | ||
+ | $${\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$ | ||
+ | |||
+ | |||
+ | |||
Version vom 1. Mai 2016, 11:44 Uhr
Allgemeine Bemerkungen
Alle auf den nächsten Seiten beschriebenen Tiefpassfunktionen weisen die folgenden Eigenschaften auf:
- Der Frequenzgang $H(f)$ ist stets reell und gerade, so dass nach dem Zuordnungssatz auch die zugehörige Impulsantwort $h(t)$ stets reell und gerade ist.
- Damit ist offensichtlich, dass die hier betrachteten Systeme akausal und somit nicht realisierbar sind. Die Beschreibung kausaler Systeme erfolgt im Kapitel 3 dieses Buches.
- Der Vorteil dieser systemtheoretischen Filterfunktionen ist die einfache Beschreibung durch maximal zwei Parameter, so dass der Filtereinfluss durchschaubar dargestellt werden kann.
- Der wichtigste Funktionsparameter ist die äquivalente Bandbreite entsprechend der Definition über das flächengleiche Rechteck:
$$\Delta f = \frac{1}{H(f=0)}\cdot \int\limits_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$
- Nach dem so genannten Reziprozitätsgesetz liegt somit auch die äquivalente Zeitdauer der Impulsantwort fest, die ebenfalls über das flächengleiche Rechteck definiert ist:
$$\Delta t = \frac{1}{h(t=0)}\cdot \int\limits_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$
- Der Gleichsignalübertragungsfaktor wird – wenn nicht explizit etwas Anderes vermerkt ist – stets zu $H(f$ = 0) = 1 angenommen.
- Aus jeder Tiefpassfunktion lassen sich entsprechende Hochpassfunktionen ableiten, wie auf der letzten Theorieseite dieses Abschnitts gezeigt wird.
Idealer Tiefpass – Küpfmüller–Tiefpass (1)
Definition: Man bezeichnet einen Tiefpass als ideal, wenn sein Frequenzgang wie folgt lautet: $$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ 0.5 \\\hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad\begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\{\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\\end{array}$$ Wir verwenden teilweise auch die Bezeichnung „Küpfmüller-Tiefpass” (KTP) in Erinnerung an den Pionier der Systemtheorie, Karl Küpfmüller.
Die Grafik zeigt einen solchen idealen Tiefpass im Frequenz– und Zeitbereich.
Man erkennt aus diesem Kurvenverläufen:
- Aufgrund des abrupten, unendlich steilen Flankenabfalls ist hier die 3dB–Grenzfrequenz $f_G$ genau halb so groß wie die systemtheoretische Bandbreite $Δf$.
- Alle Spektralanteile mit $f$ < $f_G$ werden unverfälscht durchgelassen (Durchlassbereich), alle Anteile mit $f$ > $f_G$ vollständig unterdrückt (Sperrbereich). Bei $f$ = $f_G$ gilt $H(f)$ = 0.5.
Hinweis: Die Beschreibung im Zeitbereich finden Sie nachfolgend.
Idealer Tiefpass – Küpfmüller–Tiefpass (2)
Kommen wir nun zur Beschreibung des idealen Tiefpasses im Zeitbereich:
- Die Impulsantwort ergibt sich entsprechend der Fourierrücktransformation zu
$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm si}(x) =\frac{\sin(x)}{x}.$$
- Die beidseitig bis ins Unendliche ausgedehnte Zeitfunktion weist äquidistante Nulldurchgänge im Abstand $Δt$ = 1/$Δf$ auf (siehe rechte untere Grafik). *Der asymptotische Abfall erfolgt umgekehrt proportional mit der Zeit: '"`UNIQ-MathJax5-QINU`"' *Daraus folgt, dass die Impulsantwort erst für Zeiten $t$ > $t_1_‰$ = 318 · $Δt$ mit Sicherheit kleiner als 1‰ des Impulsmaximums ist.
- Die Sprungantwort ergibt sich aus der Impulsantwort durch Integration und lautet:
$${\rm \sigma}(t) = \int\limits_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$
- Hierbei ist die so genannte Integral–Sinusfunktion
$${\rm Si}(x) = \int\limits_{ 0 }^{ x } {{\rm si} ( \xi )} \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+ ...$$
- verwendet, die folgende Eigenschaften besitzt:
$${\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$