Stochastische Signaltheorie/Erzeugung vorgegebener AKF-Eigenschaften: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Filterung stochastischer Signale |Vorherige Seite=Digitale Filter |Nächste Seite=Matched-Filter }} ==AKF am Ausgang eines nichtrekursiv…“) |
|||
Zeile 37: | Zeile 37: | ||
{{end}} | {{end}} | ||
+ | ==Koeffizientenbestimmung (1)== | ||
+ | Nun soll die Frage geklärt werden, wie die Koeffizienten $a_0, ... , a_M$ eines nichtrekursiven Filters $M$-ter Ordnung ermittelt werden können, wenn die gewünschten AKF-Werte $φ_y(0), ... , φ_y(M · T_{\rm A})$ gegeben sind. Außerhalb des Bereiches $–M · T_{\rm A} ... M · T_{\rm A}$ sollen alle AKF-Werte gleich 0 sein. | ||
+ | Für $σ_x =$ 1 ergibt sich das folgende ''nichtlineare Gleichungssystem'', wobei zur Vereinfachung der Schreibweise $φ_k = φ_y(k · T_{\rm A})$ verwendet wird: | ||
+ | $$\begin{align*}\varphi _0 & = \sum\limits_{\mu = 0}^M {a_\mu^2 ,}\\ \varphi _1 & = \sum\limits_{\mu = 0}^{M - 1} {a_\mu \cdot a_{\mu + 1} ,} \\ & . & \\ & . &\\ & . &\\ \varphi _{M - 1} & = a_0 \cdot a_{M - 1} + a_1 \cdot a_M , \\ \varphi _M & = a_0 \cdot a_M .\end{align*}$$ | ||
+ | Man erhält somit für die $M +$ 1 Koeffizienten auch $M +$ 1 unabhängige Gleichungen. Durch sukzessives Eliminieren der Koeffizienten $a_1, ... , a_M$ bleibt für $a_0$ eine nichtlineare Gleichung höherer Ordnung übrig. | ||
+ | |||
+ | |||
+ | {{Beispiel}} | ||
+ | Wir betrachten folgende Konstellation: | ||
+ | *ein rekursives Filter erster Ordnung ⇒ $M =$ 1, | ||
+ | *eine zeitdiskrete Eingangsfolge $〈x_ν〉$ mit Mittelwert $m_x =$ 0 und Streuung $σ_x =$ 1, | ||
+ | *gewünschte AKF-Werte der Folge $〈y_ν〉: φ_y(0) = φ_0 =$ 0.58 und $φ_y(±T_{\rm A}) = φ_1 =$ 0.21. | ||
+ | |||
+ | |||
+ | Damit lautet das obige Gleichungssystem: | ||
+ | $$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$ | ||
+ | $$\varphi _1 = a_0 \cdot a_1 = 0.21.$$ | ||
+ | Dies führt zu einer Gleichung vom Grad 4, nämlich | ||
+ | $$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$ | ||
+ | Eine Lösung stellt $a_0 =$ 0.7 dar. Durch Einsetzen in die zweite Gleichung findet man $a_1 =$ 0.3. | ||
+ | {{end}} | ||
+ | |||
+ | |||
+ | Man erkennt aus diesem Beispiel, dass sich schon im einfachsten Fall ⇒ $M =$ 1 eine nichtlineare Bestimmungsgleichung für $a_0$ vom Grad 4 ergibt. | ||
Version vom 8. Juni 2016, 17:11 Uhr
AKF am Ausgang eines nichtrekursiven Filters
Wir betrachten ein nichtrekursives Laufzeitfilter M-ter Ordnung gemäß der folgenden Grafik. Die zeitdiskrete Eingangsgröße $〈x_ν〉$ ist mittelwertfrei $(m_x =$ 0), gaußverteilt (mit Streuung $σ_x$) und statistisch unabhängig („Weißes Rauschen”).
- Somit gilt für die zeitdiskrete Autokorrelationsfunktion am Eingang:
$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c} {\sigma _x ^2 } & {\rm{f\ddot{u}r}\quad {\it k} = 0,} \\ 0 & {\rm{f\ddot{u}r}\quad {\it k} \ne 0.} \\\end{array}} \right.$$
- Die AKF der zeitdiskreten Ausgangsfolge $〈y_ν〉$ lautet:
$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2 \cdot \sum\limits_{\mu = 0}^{M - k} {a_\mu \cdot a_{\mu + k } } \quad {\rm{f\ddot{u}r}}\quad {\it k} = 0, 1,\,...\,,\,{\it M}.$$
- Alle AKF–Werte mit $k > M$ sind 0, und alle AKF–Werte mit $k < M$ sind symmetrisch um 0:
$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$
Liegt am Eingang eines nichtrekursiven Filters erster Ordnung (Filterkoeffizienten $a_0 =$ 0.6, $a_1 =$ 0.8) zeitdiskretes weißes Rauschen mit der Streuung $σ_x =$ 2 an, so lauten die diskreten AKF-Werte des Ausgangssignals (alle anderen AKF-Werte sind 0): $$\varphi _y (0) = \sigma _x ^2 \cdot ( {a_0 ^2 + a_1 ^2 }) = 4,\hspace{0.8cm} \varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot a_0 \cdot a_1 = 1.92.$$
Die Grafik kann wie fiolgt interpretiert werden:
- Wegen $a_0^2 + a_1^2 =$ 1 besitzt das Ausgangssignal $y(t)$ genau die gleiche Varianz $σ_y^2 = φ_y(0)$ wie das Eingangssignal: $σ_x^2 = φ_x(0) =$ 4.
- Im Gegensatz zur Eingangsfolge $〈x_ν〉$ gibt es bei der Folge $〈y_ν〉$ am Filterausgang statistische Bindungen zwischen benachbarten Abtastwerten.
Koeffizientenbestimmung (1)
Nun soll die Frage geklärt werden, wie die Koeffizienten $a_0, ... , a_M$ eines nichtrekursiven Filters $M$-ter Ordnung ermittelt werden können, wenn die gewünschten AKF-Werte $φ_y(0), ... , φ_y(M · T_{\rm A})$ gegeben sind. Außerhalb des Bereiches $–M · T_{\rm A} ... M · T_{\rm A}$ sollen alle AKF-Werte gleich 0 sein.
Für $σ_x =$ 1 ergibt sich das folgende nichtlineare Gleichungssystem, wobei zur Vereinfachung der Schreibweise $φ_k = φ_y(k · T_{\rm A})$ verwendet wird: $$\begin{align*}\varphi _0 & = \sum\limits_{\mu = 0}^M {a_\mu^2 ,}\\ \varphi _1 & = \sum\limits_{\mu = 0}^{M - 1} {a_\mu \cdot a_{\mu + 1} ,} \\ & . & \\ & . &\\ & . &\\ \varphi _{M - 1} & = a_0 \cdot a_{M - 1} + a_1 \cdot a_M , \\ \varphi _M & = a_0 \cdot a_M .\end{align*}$$ Man erhält somit für die $M +$ 1 Koeffizienten auch $M +$ 1 unabhängige Gleichungen. Durch sukzessives Eliminieren der Koeffizienten $a_1, ... , a_M$ bleibt für $a_0$ eine nichtlineare Gleichung höherer Ordnung übrig.
Wir betrachten folgende Konstellation:
- ein rekursives Filter erster Ordnung ⇒ $M =$ 1,
- eine zeitdiskrete Eingangsfolge $〈x_ν〉$ mit Mittelwert $m_x =$ 0 und Streuung $σ_x =$ 1,
- gewünschte AKF-Werte der Folge $〈y_ν〉: φ_y(0) = φ_0 =$ 0.58 und $φ_y(±T_{\rm A}) = φ_1 =$ 0.21.
Damit lautet das obige Gleichungssystem:
$$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$
$$\varphi _1 = a_0 \cdot a_1 = 0.21.$$
Dies führt zu einer Gleichung vom Grad 4, nämlich
$$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$
Eine Lösung stellt $a_0 =$ 0.7 dar. Durch Einsetzen in die zweite Gleichung findet man $a_1 =$ 0.3.
Man erkennt aus diesem Beispiel, dass sich schon im einfachsten Fall ⇒ $M =$ 1 eine nichtlineare Bestimmungsgleichung für $a_0$ vom Grad 4 ergibt.