Aufgaben:Aufgabe 1.7: Nahezu kausaler Gaußtiefpass: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}} [[Datei:|right|]] ===Fragebogen=== <quiz display=sim…“)
 
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
 
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
  
[[Datei:|right|]]
+
[[Datei:P_ID863__LZI_A_1_7.png|right|Nahezu kausaler Gaußtiefpass (Aufgabe A1.7)]] Messungen haben ergeben, dass ein LZI–System mit guter Näherung durch einen Gaußtiefpass angenähert werden kann, wenn man eine zusätzliche Laufzeit $τ$ berücksichtigt. Somit lautet der Frequenzgang:
 +
$$H(f) = {\rm e}^{-\pi(f/\Delta f)^2} \cdot {\rm e}^{-{\rm
 +
j}2\pi f \tau}.$$
 +
Die beiden Systemparameter $Δt = 1/Δf$ und $τ$ können der in der Grafik dargestellten Impulsantwort $h(t)$ entnommen werden.
 +
 
 +
Es ist offensichtlich, dass dieses Modell nicht exakt der Wirklichkeit entspricht, da die Impulsantwort $h(t)$ auch für $t <$ 0 nicht vollkommen verschwindet. In der Teilaufgabe c) wird deshalb nach dem maximalen relativen Fehler gefragt, der wie folgt definiert ist:
 +
$$\varepsilon_{\rm max} = \frac{\max_{t \hspace{0.02cm}<
 +
\hspace{0.1cm}0}|h(t)|}{h(t = \tau)}.$$
 +
In Worten: Der maximale relative Fehler $ε_{\rm max}$ ist gleich dem Maximalwert der Impulsantwort $h(t)$ bei negativen Zeiten, bezogen auf den maximalen Wert $h(t = τ)$ der Impulsantwort.
 +
 
 +
'''Hinweis:''' Die Aufgabe bezieht sich auf die Seite [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Gau.C3.9F.E2.80.93Tiefpass|Gaußtiefpass]] im Kapitel 1.3. Zur Berechnung von Sprung– und Rechteckantwort können Sie das Gaußsche Fehlerintegral verwenden:
 +
$${\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot
 +
\int\limits_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
 +
 
 +
 
 +
[[Datei:P_ID864__LZI_A_1_7b.png | Werte der Gaußschen Fehlerfunktion (Aufgabe A1.7)]]
  
  

Version vom 4. August 2016, 15:18 Uhr

Nahezu kausaler Gaußtiefpass (Aufgabe A1.7)

Messungen haben ergeben, dass ein LZI–System mit guter Näherung durch einen Gaußtiefpass angenähert werden kann, wenn man eine zusätzliche Laufzeit $τ$ berücksichtigt. Somit lautet der Frequenzgang:

$$H(f) = {\rm e}^{-\pi(f/\Delta f)^2} \cdot {\rm e}^{-{\rm j}2\pi f \tau}.$$ Die beiden Systemparameter $Δt = 1/Δf$ und $τ$ können der in der Grafik dargestellten Impulsantwort $h(t)$ entnommen werden.

Es ist offensichtlich, dass dieses Modell nicht exakt der Wirklichkeit entspricht, da die Impulsantwort $h(t)$ auch für $t <$ 0 nicht vollkommen verschwindet. In der Teilaufgabe c) wird deshalb nach dem maximalen relativen Fehler gefragt, der wie folgt definiert ist: $$\varepsilon_{\rm max} = \frac{\max_{t \hspace{0.02cm}< \hspace{0.1cm}0}|h(t)|}{h(t = \tau)}.$$ In Worten: Der maximale relative Fehler $ε_{\rm max}$ ist gleich dem Maximalwert der Impulsantwort $h(t)$ bei negativen Zeiten, bezogen auf den maximalen Wert $h(t = τ)$ der Impulsantwort.

Hinweis: Die Aufgabe bezieht sich auf die Seite Gaußtiefpass im Kapitel 1.3. Zur Berechnung von Sprung– und Rechteckantwort können Sie das Gaußsche Fehlerintegral verwenden: $${\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int\limits_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$


Werte der Gaußschen Fehlerfunktion (Aufgabe A1.7)


Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

a)
b)
c)
d)
e)
f)
g)