Aufgaben:Aufgabe 1.7: Nahezu kausaler Gaußtiefpass: Unterschied zwischen den Versionen
Zeile 52: | Zeile 52: | ||
:'''b)''' Ohne Berücksichtigung der Laufzeit ergäbe sich ein Cosinussignal mit der Amplitude | :'''b)''' Ohne Berücksichtigung der Laufzeit ergäbe sich ein Cosinussignal mit der Amplitude | ||
− | $$A_y = 1\,{\rm V} \cdot {\rm e}^{-\pi({{6\,\rm MHz}}/{{8\,\rm MHz}})^2}= 0.171\,{\rm V}.$$ | + | $$A_y = 1\,{\rm V} \cdot {\rm e}^{-\pi({ {6\,\rm MHz} }/{ {8\,\rm MHz} })^2}= 0.171\,{\rm V}.$$ |
− | Die Laufzeit bewirkt eine Phasenverschiebung um $3π$: | + | :Die Laufzeit bewirkt eine Phasenverschiebung um $3π$: |
$$\begin{align*} y(t) & = A_y \cdot {\rm cos}(2\pi f_0 ( t - \tau) ) = A_y \cdot {\rm cos}(2\pi f_0 t - 2\pi \cdot {6\,\rm MHz}\cdot {250\,\rm ns} ) \\ & = A_y \cdot {\rm cos}(2\pi f_0 t - 3\pi ) = -A_y \cdot {\rm cos}(2\pi f_0 t ).\end{align*}$$ | $$\begin{align*} y(t) & = A_y \cdot {\rm cos}(2\pi f_0 ( t - \tau) ) = A_y \cdot {\rm cos}(2\pi f_0 t - 2\pi \cdot {6\,\rm MHz}\cdot {250\,\rm ns} ) \\ & = A_y \cdot {\rm cos}(2\pi f_0 t - 3\pi ) = -A_y \cdot {\rm cos}(2\pi f_0 t ).\end{align*}$$ | ||
− | Der gesuchte Wert ist somit $y(t = 0) \ \rm \underline{= \ –0.171 \ V}$. | + | :Der gesuchte Wert ist somit $y(t = 0) \ \rm \underline{= \ –0.171 \ V}$. |
Version vom 5. August 2016, 16:18 Uhr
Messungen haben ergeben, dass ein LZI–System mit guter Näherung durch einen Gaußtiefpass angenähert werden kann, wenn man eine zusätzliche Laufzeit $τ$ berücksichtigt. Somit lautet der Frequenzgang:
$$H(f) = {\rm e}^{-\pi(f/\Delta f)^2} \cdot {\rm e}^{-{\rm j}2\pi f \tau}.$$ Die beiden Systemparameter $Δt = 1/Δf$ und $τ$ können der in der Grafik dargestellten Impulsantwort $h(t)$ entnommen werden.
Es ist offensichtlich, dass dieses Modell nicht exakt der Wirklichkeit entspricht, da die Impulsantwort $h(t)$ auch für $t <$ 0 nicht vollkommen verschwindet. In der Teilaufgabe c) wird deshalb nach dem maximalen relativen Fehler gefragt, der wie folgt definiert ist: $$\varepsilon_{\rm max} = \frac{\max_{t \hspace{0.02cm}< \hspace{0.1cm}0}|h(t)|}{h(t = \tau)}.$$ In Worten: Der maximale relative Fehler $ε_{\rm max}$ ist gleich dem Maximalwert der Impulsantwort $h(t)$ bei negativen Zeiten, bezogen auf den maximalen Wert $h(t = τ)$ der Impulsantwort.
Hinweis: Die Aufgabe bezieht sich auf die Seite Gaußtiefpass im Kapitel 1.3. Zur Berechnung von Sprung– und Rechteckantwort können Sie das Gaußsche Fehlerintegral verwenden: $${\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int\limits_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$
Fragebogen
Musterlösung
- a) Die äquivalente Bandbreite $Δf$ ist gleich $h(t = τ) \ \rm \underline{= \ 8 \ MHz}$. Dies ist gleichzeitig der Kehrwert der äquivalenten Impulsdauer $Δt =$ 125 ns. Auch die Phasenlaufzeit $τ \ \rm \underline{= \ 250 \ ns}$ kann direkt aus der Grafik abgelesen werden.
- b) Ohne Berücksichtigung der Laufzeit ergäbe sich ein Cosinussignal mit der Amplitude
$$A_y = 1\,{\rm V} \cdot {\rm e}^{-\pi({ {6\,\rm MHz} }/{ {8\,\rm MHz} })^2}= 0.171\,{\rm V}.$$
- Die Laufzeit bewirkt eine Phasenverschiebung um $3π$:
$$\begin{align*} y(t) & = A_y \cdot {\rm cos}(2\pi f_0 ( t - \tau) ) = A_y \cdot {\rm cos}(2\pi f_0 t - 2\pi \cdot {6\,\rm MHz}\cdot {250\,\rm ns} ) \\ & = A_y \cdot {\rm cos}(2\pi f_0 t - 3\pi ) = -A_y \cdot {\rm cos}(2\pi f_0 t ).\end{align*}$$
- Der gesuchte Wert ist somit $y(t = 0) \ \rm \underline{= \ –0.171 \ V}$.
- c)
- d)
- e)
- f)
- g)