Aufgaben:Aufgabe 3.6Z: Zwei imaginäre Pole: Unterschied zwischen den Versionen
Aus LNTwww
Nabil (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Rücktransformation }} right| :In dieser Aufgabe betrachte…“) |
Nabil (Diskussion | Beiträge) K (Nabil verschob die Seite Zusatzaufgaben:3.6 Zwei imaginäre Pole nach 3.6Z Zwei imaginäre Pole) |
(kein Unterschied)
|
Version vom 13. Oktober 2016, 19:41 Uhr
- In dieser Aufgabe betrachten wir ein kausales Signal x(t) mit der Laplace–Transformierten
- $$X_{\rm L}(p) = \frac { p} { p^2 + 4 \pi^2}= \frac { p} { (p-{\rm j} \cdot 2\pi)(p+{\rm j} \cdot 2\pi)} \hspace{0.05cm}$$
- entsprechend der Grafik (eine rote Nullstelle und zwei grüne Pole). Das Signal y(t) besitze dagegen die Laplace–Spektralfunktion
- $$Y_{\rm L}(p) = \frac { 1} { p^2 + 4 \pi^2} \hspace{0.05cm}.$$
- Die rote Nullstelle gehört somit nicht zu YL(p).
- Abschließend wird noch das Signal z(t) mit der Laplace–Transformierten
- $$Z_{\rm L}(p) = \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)} \hspace{0.05cm}$$
- betrachtet, insbesondere der Grenzfall für β → 0.
- Hinweis: Die Aufgabe bezieht sich auf das Kapitel 3.3. Die Frequenzvariable p ist so normiert, dass nach Anwendung des Residuensatzes die Zeit t in Mikrosekunden angegeben ist. Ein Ergebnis t = 1 ist somit als t/T = 1 mit T = 1 μs zu interpretieren. Der Residuensatz lautet am Beispiel der Funktion XL(p) mit zwei einfachen Polstellen bei ±jβ:
- $$x(t) = X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \it \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \it \beta}} \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- 1. Durch Anwendung des Residuensatzes erhält man für das Signal x(t) bei positiven Zeiten:
- $$x_1(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}= \frac {p} { p+{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,\\ x_2(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p t}\}= \frac {p} { p-{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t} \hspace{0.05cm} .$$
- $$\Rightarrow \hspace{0.3cm} x(t) = x_1(t) + x_2(t) = \frac{1}{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\right ] = \cos(2\pi t) \hspace{0.05cm} .$$
- Richtig sind somit die Lösungsvorschläge 1, 3 und 4.
- 2. Prinzipiell könnte diese Teilaufgabe in gleicher Weise gelöst werden wie die Teilaufgabe a). Man kann aber auch den Integrationssatz heranziehen. Dieser besagt unter anderem, dass die Multiplikation mit 1/p im Spektralbereich der Integration im Zeitbereich entspricht:
- $$Y_{\rm L}(p) = \frac{1}{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int\limits_{-\infty}^t \cos(2\pi \tau)\,\,{\rm d}\tau = \frac{1}{2\pi} \cdot \sin(2\pi t) \hspace{0.05cm} .$$
- Richtig sind dementsprechend die Lösungsalternativen 2 und 4.
- Hinweis: Das kausale Cosinussignal x(t) sowie das hier berechnete kausale Sinussignal y(t) sind auf dem Angabenblatt zu Aufgabe A3.6 als cK(t) bzw. sK(t) dargestellt.
- 3. Ein Vergleich mit der Berechnung von x(t) zeigt, dass z(t) = cos (β · t) für t ≥ 0 und z(t) = 0 für t < 0 gilt. Der Grenzübergang für β → 0 führt damit zur Sprungfunktion γ(t) ⇒ Lösungsvorschläge 1 und 3. Zum gleichen Ergebnis kommt man durch die Betrachtung im Spektralbereich:
- $$Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = \frac{1}{p} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z(t) = \gamma(t) \hspace{0.05cm} .$$