Digitalsignalübertragung/Systemkomponenten eines Basisbandübertragungssystems: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
 
|Nächste Seite=Fehlerwahrscheinlichkeit bei Basisbandübertragung
 
|Nächste Seite=Fehlerwahrscheinlichkeit bei Basisbandübertragung
 
}}
 
}}
 +
 +
Das Kapitel 1 führt in das weite Gebiet der Digitalsignalübertragung ein, wobei einige vereinfachende Annahmen getroffen werden: ein redundanzfreies binäres Sendesignal, keine Impulsinterferenzen. Obwohl die Beschreibung vorwiegend im Basisband erfolgt, lassen sich die Ergebnisse meist auch auf die digitalen Trägerfrequenzsysteme (Kapitel 1.5) übertragen. Im Einzelnen werden behandelt:
 +
*der prinzipielle Aufbau und die Komponenten eines Basisbandübertragungssystems,
 +
*die Definitionen von Bitfehlerwahrscheinlichkeit und Bitfehlerhäufigkeit (BER),
 +
*die Eigenschaften der Nyquistsysteme, die eine impulsinterferenzfreie Übertragung erlauben,
 +
*die Optimierung der binären Basisbandsysteme bei Leistungs- und Spitzenwertbegrenzung,
 +
*die Verallgemeinerung der Ergebnisse auf Trägerfrequenzsysteme,
 +
*die weitgehend gemeinsame Beschreibung von ASK, BPSK und 4–QAM.
  
 
==Vereinfachtes Systemmodell==
 
==Vereinfachtes Systemmodell==

Version vom 13. November 2016, 18:11 Uhr

  • [[Digitalsignalübertragung/{{{Vorherige Seite}}} | Vorherige Seite]]
  • Nächste Seite
  • [[Digitalsignalübertragung/{{{Vorherige Seite}}} | Vorherige Seite]]
  • Nächste Seite

Das Kapitel 1 führt in das weite Gebiet der Digitalsignalübertragung ein, wobei einige vereinfachende Annahmen getroffen werden: ein redundanzfreies binäres Sendesignal, keine Impulsinterferenzen. Obwohl die Beschreibung vorwiegend im Basisband erfolgt, lassen sich die Ergebnisse meist auch auf die digitalen Trägerfrequenzsysteme (Kapitel 1.5) übertragen. Im Einzelnen werden behandelt:

  • der prinzipielle Aufbau und die Komponenten eines Basisbandübertragungssystems,
  • die Definitionen von Bitfehlerwahrscheinlichkeit und Bitfehlerhäufigkeit (BER),
  • die Eigenschaften der Nyquistsysteme, die eine impulsinterferenzfreie Übertragung erlauben,
  • die Optimierung der binären Basisbandsysteme bei Leistungs- und Spitzenwertbegrenzung,
  • die Verallgemeinerung der Ergebnisse auf Trägerfrequenzsysteme,
  • die weitgehend gemeinsame Beschreibung von ASK, BPSK und 4–QAM.

Vereinfachtes Systemmodell

Im gesamten ersten Kapitel wird für das Digitalsystem von folgendem Blockschaltbild ausgegangen:

Blockschaltbild

Im Vergleich zu einem analogen Übertragungssystem (siehe Buch Modulationsverfahren) erkennt man in diesem vereinfachten Systemmodell folgende Gemeinsamkeiten und Unterschiede:

  • Das Blockschaltbild ist in beiden Fällen in genau gleicher Weise aufgebaut – bestehend aus Quelle, Sender, Kanal, Empfänger und Sinke – und auch die Signale werden gleich bezeichnet.
  • Auch beim digitalen Übertragungssystem ist das Empfangssignal $r(t)$ aufgrund der Störungen zeit– und wertkontinuierlich. Das Sendesignal $s(t)$ kann zeit– und wertdiskret sein, muss aber nicht.
  • Im Unterschied zum Buch Modulationsverfahren sind aber nun das Quellensignal q(t) und das Sinkensignal υ(t) stets Digitalsignale. Sie sind dementsprechend sowohl zeit– als auch wertdiskret.
  • Alle Informationen über $q(t)$ und $υ(t)$ können somit auch durch die Quellensymbolfolge 〈$q$ν〉 und die Sinkensymbolfolge 〈$υ$ν〉 gemeinsam mit der Symboldauer $T$ ausgedrückt werden.
  • Ein Digitalempfänger unterscheidet sich grundsätzlich vom Empfänger eines Analogsystems, da er zusätzlich eine Entscheidungskomponente zur Gewinnung des digitalen Sinkensignals $υ(t)$ aus dem analogen Empfangssignals $r(t)$ beinhalten muss.
  • In den ersten drei Kapiteln dieses Buches betrachten wir die digitale Basisbandübertragung, was besagt, dass das Nachrichtensignal $q(t)$ ohne vorherige Frequenzumsetzung (Modulation mit einer Trägerschwingung) übertragen wird.
  • Deshalb sind hier $s(t)$ und $r(t)$ Tiefpass–Signale und auch für den Kanal (inklusive der Störungen) muss stets von einer Tiefpass–Charakteristik ausgegangen werden.

Nachfolgend werden die Eigenschaften der einzelnen Systemkomponenten detailliert beschrieben, wobei die idealisierenden Voraussetzungen für Kapitel 1 geeignet berücksichtigt werden.