Aufgaben:Aufgabe 1.2Z: Linear verzerrendes System: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 26: Zeile 26:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Wie groß ist die äquivalente Impulsdauer $Δt_1$, bezogen auf die Periode $T_0$?
|type="[]"}
+
|type="{}"}
- Falsch
+
$Δt_1/T_0$= { 0.5 3% }
+ Richtig
+
 
 +
 
 +
{Wie groß ist der Maximalwert des Fehlersignals $ε_1(t) = υ_1(t) – q(t)$?
 +
|type="{}"}
 +
$ε_{1, max}$ = { 1 3% } $\text{V}$
  
 +
{Wie groß ist die „Leistung” $P_{ε1}$ des Fehlersignals, also die mittlere quadratische Abweichung zwischen $υ_1(t)$ und $q(t)$?
 +
|type="{}"}
 +
$P_{ε1}$ = { 0.333 3% } $V^{ 2 }$
  
{Input-Box Frage
+
{Berechnen Sie die Nutzleistung $P_q$ und das Sinken–$\text{SNR}$ $ρ_{υ1}$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$p_q$= { 2 3% } $V^{ 2 }$
 +
$p_{v1}$= { 6 3% }
  
 +
{Geben Sie die äquivalente Dauer $Δt_2$ an, die zum Sinkensignal $υ_2(t)$ führt.
 +
|type="{}"}
 +
$Δt_2/T_0$= { 0.25 3% }
  
 +
{Ermitteln Sie das Fehlersignal $ε_2(t) = υ_2(t) – q(t)$, die Verzerrungsleistung $P_{ε2}$ und das Sinken–$\text{SNR} ρ_{υ2}$.
 +
|type="{}"}
 +
$P_{ε2}$= { 0.167 3% } $V^{ 2 }$
 +
$ρ_{υ2}$= { 12 3% }
  
 +
{Verallgemeinern Sie Ihre Ergebnisse für eine beliebige äquivalente Impulsdauer $Δt$. Welches Sinken–$\text{SNR}$ ergibt sich für $Δt_3 = 0.05 · T_0$?
 +
|type="{}"}
 +
$ρ_{υ3}$={ 60 3% }
 
</quiz>
 
</quiz>
  

Version vom 11. Dezember 2016, 18:39 Uhr

P ID957 Mod Z 1 2.png

Modulator, Kanal und Demodulator einer Einrichtung zur Nachrichtenübertragung können durch ein einziges lineares System mit dem Frequenzgang $$ H(f) = {\rm si }( \pi \cdot f \cdot \Delta t)$$ beschrieben werden. Die dazugehörige Impulsantwort ist rechteckförmig, symmetrisch um $t = 0$ und weist die Höhe $1/Δt$ sowie die Dauer Δt auf: $$ h(t) = \left\{ \begin{array}{c} 1/\Delta t \\ 1/(2\Delta t) \\ 0 \\ \end{array} \right. \begin{array}{*{4}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} t\hspace{0.05cm} \right| < \Delta t/2,} \\ {\left| \hspace{0.005cm}t\hspace{0.05cm} \right| = \Delta t/2,} \\ {\left|\hspace{0.005cm} t \hspace{0.05cm} \right| > \Delta t/2.} \\ \end{array}$$

Es handelt sich um einen Spalttiefpass, der im Kapitel 1.3 des Buches „Lineare zeitinvariante Systeme” eingehend behandelt wurde.

Am Systemeingang liegt das periodische Rechtecksignal $q(t)$ mit der Periodendauer $T_0$ an. Die Dauer der einzelnen Rechtecke und die der Lücken sind jeweils $T_0/2$. Die Höhe der Rechtecke beträgt 2V.

Das Signal $υ(t)$ am Systemausgang wird als Sinkensignal bezeichnet. Dieses ist für zwei verschiedene Parameterwerte der äquivalenten Impulsdauer in der Grafik dargestellt:

  • Das Signal $υ_1(t)$ ergibt sich, wenn die äquivalente Impulsdauer von $h(t)$ genau $Δt_1$ ist.
  • Entsprechend ergibt sich das Signal $υ_2(t)$ mit der äquivalenten Impulsdauer $Δt_2$.

Die Veränderung vom Rechtecksignal $q(t)$ zum dreieck- bzw. trapezförmigen Sinkensignal $υ(t)$ ist auf lineare Verzerrungen zurückzuführen und wird durch das Fehlersignal $ε(t) = υ(t) – q(t)$ erfasst. Mit den Leistungen $P_q$ und $P_ε$ der Signale $q(t)$ und $ε(t)$ kann das Sinken–$\text{SNR}$ berechnet werden:

$$\rho_{v} = \frac{P_{q}}{P_{\varepsilon }} \hspace{0.05cm}.$$ Hinweis: Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.2. Die Leistungen $P_q$ und $P_ε$ sind die quadratischen Mittelwerte der Signale $q(t)$ und $ε(t)$ und können bei periodischen Signalen mit der Periodendauer $T_0$ wie folgt ermittelt werden: $$P_{q} = \overline{q(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {q(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}, \hspace{0.5cm} P_{\varepsilon} = \overline{\varepsilon(t)^2} = \frac{1}{T_{\rm 0}} \cdot \int\limits_{0}^{ T_{\rm 0}} {\varepsilon(t)^2 }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$

Fragebogen

1

Wie groß ist die äquivalente Impulsdauer $Δt_1$, bezogen auf die Periode $T_0$?

$Δt_1/T_0$=

2

Wie groß ist der Maximalwert des Fehlersignals $ε_1(t) = υ_1(t) – q(t)$?

$ε_{1, max}$ =

$\text{V}$

3

Wie groß ist die „Leistung” $P_{ε1}$ des Fehlersignals, also die mittlere quadratische Abweichung zwischen $υ_1(t)$ und $q(t)$?

$P_{ε1}$ =

$V^{ 2 }$

4

Berechnen Sie die Nutzleistung $P_q$ und das Sinken–$\text{SNR}$ $ρ_{υ1}$.

$p_q$=

$V^{ 2 }$
$p_{v1}$=

5

Geben Sie die äquivalente Dauer $Δt_2$ an, die zum Sinkensignal $υ_2(t)$ führt.

$Δt_2/T_0$=

6

Ermitteln Sie das Fehlersignal $ε_2(t) = υ_2(t) – q(t)$, die Verzerrungsleistung $P_{ε2}$ und das Sinken–$\text{SNR} ρ_{υ2}$.

$P_{ε2}$=

$V^{ 2 }$
$ρ_{υ2}$=

7

Verallgemeinern Sie Ihre Ergebnisse für eine beliebige äquivalente Impulsdauer $Δt$. Welches Sinken–$\text{SNR}$ ergibt sich für $Δt_3 = 0.05 · T_0$?

$ρ_{υ3}$=


Musterlösung

1. 2. 3. 4. 5. 6. 7.