Aufgaben:Aufgabe 1.4: Zeigerdiagramm und Ortskurve: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) |
Safwen (Diskussion | Beiträge) |
||
Zeile 23: | Zeile 23: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Geben Sie ausgehend von $s(t)$ die Gleichung für $s_+(t)$ an und vereinfachen Sie diese. Welche Gleichung gilt für das äquivalente Tiefpass–Signal? |
|type="[]"} | |type="[]"} | ||
− | - | + | - $s_{TP}(t) = A_0 · exp(–jω_0t).$ |
− | + | + | - $s_{TP}(t) = A_T + A_0 · exp(jω_0t).$ |
+ | + $s_{TP}(t) = A_T + A_0 · cos(ω_0t).$ | ||
+ | {Bestimmen Sie den Signalparameter $f_0$ | ||
+ | |type="{}"} | ||
+ | $f_0$ = { 20 3% } $\text{KHz}$ | ||
− | { | + | {Bestimmen Sie die weiteren Signalparameter $A_T$ und $A_0$. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $A_T$= { 1 3% } |
+ | $A_0$= { 0.5 3% } | ||
+ | {Berechnen Sie die Werte von $s_+(t)$ zu den Zeiten $t = 15 μs$ und $t = 20 μs$. | ||
+ | |type="{}"} | ||
+ | $s_+(t = 15 μs)$= { -0.845 3% } | ||
+ | $s_+(t = 20 μs)$= { 0.595 3% } | ||
</quiz> | </quiz> | ||
Zeile 39: | Zeile 48: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.'''Alle Cosinusfunktionen sind in entsprechende komplexe Exponentialfunktionen umzuwandeln: |
− | '''2.''' | + | $$s_+(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} + \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.05cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} - \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.03cm}t}\\ = {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ \frac{A_0}{2} \cdot \left( {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t} + {\rm e}^{\hspace{0.03cm}-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t}\right)\right]\hspace{0.05cm}.$$ |
− | '''3.''' | + | Mit der Gleichung $e^{j·α} + e^{-j·α} = 2 · cos(α)$ folgt weiter: |
− | '''4.''' | + | $$s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \right] \hspace{0.05cm}.$$ |
− | + | Damit erhält man für das äquivalente Tiefpass–Signal: | |
− | + | $$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \hspace{0.05cm}.$$ | |
− | + | Richtig ist also der $\underline={letzte Lösungsvorschlag}$. Im [http://www.lntwww.de/Modulationsverfahren/H%C3%BCllkurvendemodulation Kapitel 2.3] werden wir sehen, dass es sich dabei um die Zweiseitenband–Amplitudenmodulation eines Cosinussignals mit cosinusförmigem Träger handelt. | |
+ | |||
+ | |||
+ | '''2.'''Die Periodendauer des analytischen Signals $s_+(t)$ – und damit auch des physikalischen Signals $s(t)$ – beträgt $T_0 = 50 μs$. Unter der Voraussetzung, dass $f_T$ ein ganzzahliges Vielfaches von $f_0$ ist (was zu überprüfen ist, aber für dieses Beispiel zutrifft), ergibt sich $f_0 = 1/T0 = 20 kHz$. | ||
+ | |||
+ | '''3.'''Bei den gegebenen Zeitpunkten (Vielfache von $5 μs$) gilt für den komplexen Drehzeiger des Trägers: | ||
+ | $${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm} {100\,{\rm kHz}}\cdot \hspace{0.05cm}(k \hspace{0.05cm}\cdot \hspace{0.05cm} 5\,{\rm \mu s})} = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}k \hspace{0.03cm} \cdot \hspace{0.05cm} \pi } = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{falls}} \\ {\rm{falls}} \\ \end{array}\begin{array}{*{20}c} k \hspace{0.1cm}{\rm gerade} , \\ k \hspace{0.1cm}{\rm ungerade} . \\ \end{array}$$ | ||
+ | Deshalb folgt aus der in a) berechneten Gleichung: | ||
+ | $$k = 0 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 0) = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot 0) = A_{\rm T}+ {A_0} \hspace{0.05cm}, \\ k = 5 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 25\;{\rm \mu s}) = - \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot \frac{T_0}{2}) \right] = -A_{\rm T}+ {A_0} \hspace{0.05cm}.$$ | ||
+ | Ein Vergleich mit der ersten und letzten Gleichung auf dem Angabenblatt zeigt: | ||
+ | $$ s_{\rm +}(t = 0) = A_{\rm T}+ {A_0}=1.5 \hspace{0.05cm}, \\ s_{\rm +}(t = 25\;{\rm \mu s}) = -A_{\rm T}+ {A_0} = -0.5 \hspace{0.05cm}.$$ | ||
+ | Daraus erhält man $A_T = 1$ und $A_0 = 0.5$. | ||
+ | |||
+ | |||
+ | '''4.''' Zum Zeitpunkt $t = 15 μs$ ($k = 3$, ungerade) gilt: | ||
+ | $$ s_{\rm +}(t = 15\;{\rm \mu s}) = - \left[ 1+ 0.5 \cdot \cos (2 \pi \cdot 20\,{\rm kHz} \cdot 0.015\,{\rm ms}) \right] \hspace{0.05cm}, \\ = -1- 0.5 \cdot \cos (108^{\circ})\hspace{0.15cm}\underline {= -0.845} \hspace{0.05cm}.$$ | ||
+ | Dagegen ergibt sich für den Zeitpunkt $t = 20 μs$ ($k = 4$, gerade): | ||
+ | $$ s_{\rm +}(t = 20\;{\rm \mu s}) = 1 + 0.5 \cdot \cos (144^{\circ})\hspace{0.15cm}\underline {= 0.595} \hspace{0.05cm}.$$ | ||
+ | Bei allen diesen betrachteten Zeitpunkten ist das physikalische Signal $s(t) = Re[s_+(t)]$ genau so groß. | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Version vom 24. Dezember 2016, 00:39 Uhr
Die beiliegende Grafik zeigt das analytische Signal $s_+(t)$ in der komplexen Ebene. Die in den Rechtecken angegebenen Zahlenwerte geben die Zeitpunkte in Mikrosekunden an. Bei allen Vielfachen von $5 μs$ ist $s_+(t)$ stets reell und hat dabei folgende Werte: $$s_+(t = 0) =s_+(t = 50\;{\rm \mu s})= 1.500\hspace{0.05cm},\\ s_+(t = 5\;{\rm \mu s}) = s_+(t = 45\;{\rm \mu s})= -1.405\hspace{0.05cm},\\ s_+(t = 10\;{\rm \mu s}) = s_+(t = 40\;{\rm \mu s})= 1.155\hspace{0.05cm},\\ ... = ...\\ s_+(t = 25\;{\rm \mu s}) = -0.500\hspace{0.05cm}.$$ Als bekannt vorausgesetzt werden kann, dass das dazugehörige physikalische Signal folgende Form hat: $$s(t) = A_{\rm T} \cdot \cos \left(\omega_{\rm T}\cdot t\right) + \frac{A_0}{2}\cdot \cos\left(\left(\omega_{\rm T} + \omega_{\rm 0}\right)\cdot t \right) + \frac{A_0}{2}\cdot \cos\left(\left(\omega_{\rm T} - \omega_{\rm 0}\right)\cdot t \right)\hspace{0.05cm}.$$ Gegeben ist weiterhin die Frequenz des Trägersignals zu $f_T = 100 kHz$. Ermittelt werden sollen die drei weiteren Parameter $f_0$, $A_T$ und $A_0$.
Bezug genommen wird auch auf das äquivalente TP–Signal $s_{TP}(t)$, wobei folgender Zusammenhang mit dem analytischen Signal besteht: $$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} \hspace{0.05cm}.$$ Hinweis: Die Aufgabe bezieht sich auf das Kapitel 1.3 dieses Buches. Weitere Informationen zu dieser Thematik finden Sie in Kapitel 2.3 – Kapitel 4.2 – Kapitel 4.3 des Buches „Signaldarstellung” sowie den folgenden Interaktionsmodulen:
Zeigerdiagramm – Darstellung des analytischen Signals
Ortskurve – Verlauf des äquivalenten Tiefpass-Signals
In unserem Tutorial LNTwww wird die Darstellung des analytischen Signals $s_+(t)$ in der komplexen Ebene teilweise auch als „Zeigerdiagramm” bezeichnet, während die „Ortskurve” den zeitlichen Verlauf des äquivalenten TP–Signals $s_{TP}(t)$ angibt.
Fragebogen
Musterlösung
2.Die Periodendauer des analytischen Signals $s_+(t)$ – und damit auch des physikalischen Signals $s(t)$ – beträgt $T_0 = 50 μs$. Unter der Voraussetzung, dass $f_T$ ein ganzzahliges Vielfaches von $f_0$ ist (was zu überprüfen ist, aber für dieses Beispiel zutrifft), ergibt sich $f_0 = 1/T0 = 20 kHz$.
3.Bei den gegebenen Zeitpunkten (Vielfache von $5 μs$) gilt für den komplexen Drehzeiger des Trägers: $${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm} {100\,{\rm kHz}}\cdot \hspace{0.05cm}(k \hspace{0.05cm}\cdot \hspace{0.05cm} 5\,{\rm \mu s})} = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}k \hspace{0.03cm} \cdot \hspace{0.05cm} \pi } = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{falls}} \\ {\rm{falls}} \\ \end{array}\begin{array}{*{20}c} k \hspace{0.1cm}{\rm gerade} , \\ k \hspace{0.1cm}{\rm ungerade} . \\ \end{array}$$ Deshalb folgt aus der in a) berechneten Gleichung: $$k = 0 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 0) = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot 0) = A_{\rm T}+ {A_0} \hspace{0.05cm}, \\ k = 5 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 25\;{\rm \mu s}) = - \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot \frac{T_0}{2}) \right] = -A_{\rm T}+ {A_0} \hspace{0.05cm}.$$ Ein Vergleich mit der ersten und letzten Gleichung auf dem Angabenblatt zeigt: $$ s_{\rm +}(t = 0) = A_{\rm T}+ {A_0}=1.5 \hspace{0.05cm}, \\ s_{\rm +}(t = 25\;{\rm \mu s}) = -A_{\rm T}+ {A_0} = -0.5 \hspace{0.05cm}.$$ Daraus erhält man $A_T = 1$ und $A_0 = 0.5$.
4. Zum Zeitpunkt $t = 15 μs$ ($k = 3$, ungerade) gilt:
$$ s_{\rm +}(t = 15\;{\rm \mu s}) = - \left[ 1+ 0.5 \cdot \cos (2 \pi \cdot 20\,{\rm kHz} \cdot 0.015\,{\rm ms}) \right] \hspace{0.05cm}, \\ = -1- 0.5 \cdot \cos (108^{\circ})\hspace{0.15cm}\underline {= -0.845} \hspace{0.05cm}.$$
Dagegen ergibt sich für den Zeitpunkt $t = 20 μs$ ($k = 4$, gerade):
$$ s_{\rm +}(t = 20\;{\rm \mu s}) = 1 + 0.5 \cdot \cos (144^{\circ})\hspace{0.15cm}\underline {= 0.595} \hspace{0.05cm}.$$
Bei allen diesen betrachteten Zeitpunkten ist das physikalische Signal $s(t) = Re[s_+(t)]$ genau so groß.