Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 61: Zeile 61:
 
Die grün&ndash;durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen <i>I</i><sub>0</sub> (rot) und  <i>I</i><sub>1</sub> (blau) gelten für die Streuung <i>&sigma;<sub>n</sub></i> = 1 und die gestrichelten Grenzlinien für <i>&sigma;<sub>n</sub></i> = 0 bzw. <i>&sigma;<sub>n</sub></i> = 2.<br>
 
Die grün&ndash;durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen <i>I</i><sub>0</sub> (rot) und  <i>I</i><sub>1</sub> (blau) gelten für die Streuung <i>&sigma;<sub>n</sub></i> = 1 und die gestrichelten Grenzlinien für <i>&sigma;<sub>n</sub></i> = 0 bzw. <i>&sigma;<sub>n</sub></i> = 2.<br>
  
 +
== Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (1) ==
 +
<br>
 +
Wir gehen weiterhin von einem Binärsystem aus (<i>M</i> = 2), betrachten aber nun den einfachen Fall, dass dieses durch eine einzige Basisfunktion beschrieben werden kann (<i>N</i> = 1). Die Fehlerwahrscheinlichkeit hierfür wurde bereits in Kapitel 1.2 berechnet.<br>
  
 +
Mit der für Kapitel 4 gewählten Nomenklatur und Darstellungsform ergibt sich folgende Konstellation:
 +
*Der Empfangswert <i>r</i> = <i>s</i> + <i>n</i> &ndash; nunmehr ein Skalar &ndash; setzt sich aus dem Sendesignal <i>s</i> &#8712; {<i>s</i><sub>0</sub>, <i>s</i><sub>1</sub>} und dem Rauschterm <i>n</i> zusammen. Die Abszisse <i>&rho;</i> bezeichnet eine Realisierung von <i>r</i>.<br>
  
 +
*Die Abszisse ist auf die Bezugsgröße <i>E</i><sup>1/2</sup> normiert, wobei die Normierungsenergie <i>E</i> keine herausgehobene physikalische Bedeutung hat.<br>
  
 +
*Der Rauschterm <i>n</i>  ist gaußverteilt mit dem Mittelwert 0 und der Varianz <i>&sigma;<sub>n</sub></i><sup>2</sup>. Die Wurzel aus der Varianz (<i>&sigma;<sub>n</sub></i>) wird als Effektivwert  oder Streuung bezeichnet.<br>
  
 +
*Die Entscheidergrenze <i>G</i> unterteilt den gesamten Wertebereich von <i>r</i> in die beiden Teilbereiche <i>I</i><sub>0</sub> (in dem unter anderem <i>s</i><sub>0</sub> liegt) und <i>I</i><sub>1</sub> (mit dem Signalwert <i>s</i><sub>1</sub>).<br>
  
 +
*Ist <i>&rho;</i> > <i>G</i>, so liefert der Entscheider den Schätzwert <i>m</i><sub>0</sub>, andernfalls <i>m</i><sub>1</sub>. Hierbei ist vorausgesetzt, dass die Nachricht <i>m<sub>i</sub></i> mit dem Sendesignal <i>s<sub>i</sub></i> eineindeutig zusammenhängt: <i>m<sub>i</sub></i> &nbsp;&#8660;&nbsp; <i>s<sub>i</sub></i>.
 +
:[[Datei:P ID2020 Dig T 4 3 S2 version1.png|Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen|class=fit]]<br>
  
 +
Die Grafik zeigt die bedingten (eindimensionalen) Wahrscheinlichkeitsdichtefunktionen <i>p<sub>r|m<sub>0</sub></sub></i> und  <i>p<sub>r|m<sub>1</sub></sub></i> für den hier betrachteten AWGN&ndash;Kanal, wobei gleiche Symbolwahrscheinlichkeiten vorausgesetzt sind: Pr(<i>m<sub>0</sub></i>) =  Pr(<i>m<sub>1</sub></i>) = 0.5. Dementsprechend ist die (optimale) Entscheidergrenze <i>G</i> = 0.<br>
 +
 +
Man erkennt aus dieser Darstellung:
 +
*Ist <i>m</i> = <i>m</i><sub>0</sub> und damit <i>s</i> = <i>s</i><sub>0</sub> = 2 &middot; <i>E</i><sup> 1/2</sup>, so kommt es nur dann zu einer Fehlentscheidung, wenn <i>&eta;</i>, die Realisierung der Rauschgröße <i>n</i>, kleiner ist als &ndash;2 &middot; <i>E</i><sup> 1/2</sup>.<br>
 +
 +
*In diesem Fall ist <i>&rho;</i> < 0, wobei <i>&rho;</i> eine Realisierung des Empfangswertes <i>r</i> bezeichnet.<br><br>
 +
 +
Die Bildbeschreibung wird auf der nächsten Seite fortgesetzt.<br>
 +
 +
== ==
 
{{Display}}
 
{{Display}}

Version vom 28. Dezember 2016, 14:53 Uhr

Optimale Entscheidung bei binärer Übertragung (1)


Wir gehen hier von einem Übertragungssystem aus, das wie folgt charakterisiert werden kann: r = s + n:

  • Der das Übertragungssystem vollständig beschreibende Vektorraum wird von N = 2 zueinander orthogonalen Basisfunktionen φ1(t) und φ2(t) aufgespannt.
  • Demzufolge ist auch die Wahrscheinlichkeitsdichtefunktion des additiven und weißen Gaußschen Rauschens zweidimensional anzusetzen, gekennzeichnet durch den Vektor n = (n1, n2).
  • Es gibt nur zwei mögliche Sendesignale (M = 2), die durch die beiden Vektoren s0 = (s01, s02) und s1 = (s11, s12) beschrieben werden:
\[s_0(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm},\]
\[s_1(t) \hspace{-0.1cm} = \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) + s_{12} \cdot \varphi_2(t) \hspace{0.05cm}.\]
  • Die beiden Nachrichten m0s0 und m1s1 sind nicht notwendigermaßen gleichwahrscheinlich.
  • Aufgabe des Entscheiders ist es nun, für den gegebenen Empfangsvektor r einen Schätzwert nach der MAP–Entscheidungsregel anzugeben. Diese lautet im vorliegenden Fall:
\[\hat{m} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r} \hspace{0.05cm}|\hspace{0.05cm}m } (\boldsymbol{ \rho } |m_i ) ] \hspace{0.15cm} \in \hspace{0.15cm}\{ m_i\}\hspace{0.3cm}{\rm mit}\hspace{0.3cm} \boldsymbol{ r } = \boldsymbol{ \rho } = (\rho_1, \rho_2) \hspace{0.05cm}.\]

Im hier betrachteten Sonderfall N = 2 und M = 2 partitioniert der Entscheider den zweidimensionalen Raum in die zwei disjunkten Gebiete I0 und I1, wie in der nachfolgenden Grafik verdeutlicht. Liegt der Empfangswert in I0, so wird als Schätzwert m0 ausgegeben, andernfalls m1.

Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten

Die Herleitung und Bildbeschreibung folgt auf der nächsten Seite.

Optimale Entscheidung bei binärer Übertragung (2)


Beim AWGN–Kanal und M = 2 lautet somit die Entscheidungsregel: Man entscheide sich immer dann für die Nachricht m0, falls folgende Bedingung erfüllt ist:

\[{\rm Pr}( m_0) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 \right ] > {\rm Pr}( m_1) \cdot {\rm exp} \left [ - \frac{1}{2 \sigma_n^2} \cdot || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 \right ] \hspace{0.05cm}.\]

Die Grenzlinie zwischen den beiden Entscheidungsregionen I0 und I1 erhält man, wenn man in obiger Gleichung das Größerzeichen durch das Gleichheitszeichen ersetzt und die Gleichung etwas umformt:

\[|| \boldsymbol{ \rho } - \boldsymbol{ s }_0 ||^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_0)] = || \boldsymbol{ \rho } - \boldsymbol{ s }_1 ||^2 - 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm}[{\rm Pr}( m_1)] \]

\[\Rightarrow \hspace{0.3cm} || \boldsymbol{ s }_1 ||^2 - || \boldsymbol{ s }_0 ||^2 + 2 \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.\]

Aus dieser Gleichung erkennt man:

  • Die Grenzkurve zwischen den Regionen I0 und I1 ist eine Gerade, da die Bestimmungsgleichung linear im Empfangsvektor ρ = (ρ1, ρ2) ist.
  • Bei gleichwahrscheinlichen Symbolen verläuft die Grenze genau in der Mitte zwischen s0 und s1 und um 90° verdreht gegenüber der Verbindungslinie zwischen den Sendepunkten (linke Grafik):
\[|| \boldsymbol{ s }_1 ||^2 - || \boldsymbol{ s }_0 ||^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.\]
  • Für Pr(m0) > Pr(m1) ist die Entscheidungsgrenze in Richtung des unwahrscheinlicheren Symbols (s1) verschoben, und zwar um so mehr, je größer die AWGN–Streuung σn ist.

Entscheidungsregionen für gleiche (links) bzw. ungleiche (rechts) Auftrittswahrscheinlichkeiten

Die grün–durchgezogene Entscheidungsgrenze im rechten Bild sowie die Entscheidungsregionen I0 (rot) und I1 (blau) gelten für die Streuung σn = 1 und die gestrichelten Grenzlinien für σn = 0 bzw. σn = 2.

Gleichwahrscheinliche Binärsymbole – Fehlerwahrscheinlichkeit (1)


Wir gehen weiterhin von einem Binärsystem aus (M = 2), betrachten aber nun den einfachen Fall, dass dieses durch eine einzige Basisfunktion beschrieben werden kann (N = 1). Die Fehlerwahrscheinlichkeit hierfür wurde bereits in Kapitel 1.2 berechnet.

Mit der für Kapitel 4 gewählten Nomenklatur und Darstellungsform ergibt sich folgende Konstellation:

  • Der Empfangswert r = s + n – nunmehr ein Skalar – setzt sich aus dem Sendesignal s ∈ {s0, s1} und dem Rauschterm n zusammen. Die Abszisse ρ bezeichnet eine Realisierung von r.
  • Die Abszisse ist auf die Bezugsgröße E1/2 normiert, wobei die Normierungsenergie E keine herausgehobene physikalische Bedeutung hat.
  • Der Rauschterm n ist gaußverteilt mit dem Mittelwert 0 und der Varianz σn2. Die Wurzel aus der Varianz (σn) wird als Effektivwert oder Streuung bezeichnet.
  • Die Entscheidergrenze G unterteilt den gesamten Wertebereich von r in die beiden Teilbereiche I0 (in dem unter anderem s0 liegt) und I1 (mit dem Signalwert s1).
  • Ist ρ > G, so liefert der Entscheider den Schätzwert m0, andernfalls m1. Hierbei ist vorausgesetzt, dass die Nachricht mi mit dem Sendesignal si eineindeutig zusammenhängt: mi  ⇔  si.
Bedingte Dichtefunktionen bei gleichwahrscheinlichen Symbolen

Die Grafik zeigt die bedingten (eindimensionalen) Wahrscheinlichkeitsdichtefunktionen pr|m0 und pr|m1 für den hier betrachteten AWGN–Kanal, wobei gleiche Symbolwahrscheinlichkeiten vorausgesetzt sind: Pr(m0) = Pr(m1) = 0.5. Dementsprechend ist die (optimale) Entscheidergrenze G = 0.

Man erkennt aus dieser Darstellung:

  • Ist m = m0 und damit s = s0 = 2 · E 1/2, so kommt es nur dann zu einer Fehlentscheidung, wenn η, die Realisierung der Rauschgröße n, kleiner ist als –2 · E 1/2.
  • In diesem Fall ist ρ < 0, wobei ρ eine Realisierung des Empfangswertes r bezeichnet.

Die Bildbeschreibung wird auf der nächsten Seite fortgesetzt.