Digitalsignalübertragung/Beschreibungsgrößen digitaler Kanalmodelle: Unterschied zwischen den Versionen
Ayush (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „ {{Header |Untermenü=Digitale Kanalmodelle |Vorherige Seite=Trägerfrequenzsysteme mit nichtkohärenter Demodulation |Nächste Seite=Binary Symmetric Channel…“) |
Ayush (Diskussion | Beiträge) |
||
Zeile 34: | Zeile 34: | ||
Bei optischen Systemen muss zudem das multiplikativ wirkende, also signalabhängige Schrotrauschen geeignet in das analoge Kanalmodell eingearbeitet werden.{{end}}<br> | Bei optischen Systemen muss zudem das multiplikativ wirkende, also signalabhängige Schrotrauschen geeignet in das analoge Kanalmodell eingearbeitet werden.{{end}}<br> | ||
+ | |||
+ | == Definition digitaler Kanalmodelle (1) == | ||
+ | <br> | ||
+ | Ein analoges Kanalmodell zeichnet sich durch analoge Eingangs– und Ausgangsgrößen aus. Dagegen sind bei einem digitalen Kanalmodell (manchmal auch als „diskret” bezeichnet) sowohl der Eingang als auch der Ausgang zeit– und wertdiskret. Im Folgenden seien dies die <i>Quellensymbolfolge</i> 〈<i>q<sub>ν</sub></i>〉 ∈ {<b>L</b>, <b>H</b>} und die Sinkensymbolfolge 〈<i>υ<sub>ν</sub></i>〉 ∈ {<b>L</b>, <b>H</b>}. Die Laufvariable <i>ν</i> kann Werte zwischen 1 und <i>N</i> annehmen.<br> | ||
+ | |||
+ | [[Datei:P ID1822 Dig T 5 1 S2 version1.png|Digitales Kanalmodell und beispielhafte Folgen|class=fit]]<br> | ||
+ | |||
+ | Wie ein Vergleich mit dem [http://www.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Beschreibungsgr%C3%B6%C3%9Fen_digitaler_Kanalmodelle&action=submit#Anwendung_analoger_Kanalmodelle Blockschaltbild] auf der letzten Seite zeigt, ist der Digitale Kanal ein vereinfachendes Modell des analogen Übertragungskanals einschließlich der technischen Sende– und Empfangseinrichtungen. Vereinfachend deshalb, weil dieses Modell sich lediglich auf die auftretenden Übertragungsfehler bezieht, dargestellt durch die Fehlerfolge 〈<i>e<sub>ν</sub></i>〉 mit | ||
+ | |||
+ | :<math>e_{\nu} = | ||
+ | \left\{ \begin{array}{c} 1 \\ | ||
+ | 0 \end{array} \right.\quad | ||
+ | \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}\upsilon_\nu \ne q_\nu \hspace{0.05cm}, | ||
+ | \\ {\rm falls}\hspace{0.15cm} \upsilon_\nu = q_\nu \hspace{0.05cm}.\\ \end{array}</math> | ||
+ | |||
+ | Während <b>L</b> und <b>H</b> die möglichen Symbole bezeichnen, die hier für <i>Low</i> und <i>High</i> stehen, ist <i>e<sub>ν</sub></i> ∈ {0, 1} ein reeller Zahlenwert. Oft werden die Symbole auch als <i>q<sub>ν</sub></i> ∈ {0, 1} und <i>υ<sub>ν</sub></i> ∈ {0, 1}definiert. Um Verwechslungen zu vermeiden, haben wir hier die etwas ungewöhnliche Nomenklatur verwendet.<br> | ||
+ | |||
+ | Die in der Grafik angegebene Fehlerfolge 〈<i>e<sub>ν</sub></i>〉 | ||
+ | |||
+ | *ergibt sich durch den Vergleich der beiden Binärfolgen 〈<i>q<sub>ν</sub></i>〉 und 〈<i>υ<sub>ν</sub></i>〉,<br> | ||
+ | *beinhaltet nur Informationen über die Abfolge der Übertragungsfehler und damit im Allgemeinen weniger Information als ein analoges Kanalmodell,<br> | ||
+ | *wird zweckmäßigerweise durch einen Zufallsprozess mit nur wenigen Parametern angenähert.<br><br> | ||
+ | |||
+ | Die Fehlerfolge 〈<i>e<sub>ν</sub></i>〉 erlaubt Aussagen über die Fehlerstatistik, zum Beispiel ob es sich um so genannte | ||
+ | *statistisch unabhängige Fehler, oder<br> | ||
+ | |||
+ | *Bündelfehler<br><br> | ||
+ | |||
+ | handelt. Das folgende Beispiel soll diese beiden Fehlerarten verdeutlichen.<br> | ||
+ | |||
+ | == == | ||
+ | |||
+ | |||
+ | == == | ||
{{Display}} | {{Display}} |
Version vom 31. Dezember 2016, 15:50 Uhr
Inhaltsverzeichnis
Anwendung analoger Kanalmodelle
Für Untersuchungen von Nachrichtenübertragungssystemen sind geeignete Kanalmodelle von großer Wichtigkeit, weil diese
- Voraussetzung für eine Systemsimulation und –optimierung sind, sowie
- gleichbleibende und rekonstruierbare Randbedingungen schaffen.
Für die Digitalsignalübertragung gibt es sowohl analoge als auch digitale Kanalmodelle: Ein analoges Kanalmodell muss zwar den Übertragungskanal nicht in allen physikalischen Einzelheiten wiedergeben, sollte jedoch dessen Übertragungsverhalten inklusive der dominanten Störgrößen funktionell ausreichend genau beschreiben. Meist muss ein Kompromiss zwischen mathematischer Handhabbarkeit und dem Bezug zur Realität gefunden werden.
Ein Sonderfall dieses Modells ist der so genannte AWGN–Kanal (Additive White Gaussian Noise) mit den Systemeigenschaften
\[H_{\rm K}(f) = 1\hspace{0.05cm},\hspace{0.2cm}{\it \Phi}_{n}(f) = {\rm const.}\hspace{0.05cm},\hspace{0.2cm} {f}_{n}(n) = \frac{1}{\sqrt{2 \pi} \cdot \sigma} \cdot {\rm e}^{-n^2\hspace{-0.05cm}/(2 \sigma^2)}\hspace{0.05cm}.\]
Dieses einfache Modell eignet sich zum Beispiel zur Beschreibung eines Funkkanals mit zeitinvariantem Verhalten, wobei das Kanalmodell dahingehend abstrahiert ist, dass
- der eigentlich bandpassartige Kanal im äquivalenten Tiefpassbereich beschrieben wird, und
- die vom Frequenzband und der Übertragungsweglänge abhängige Dämpfung mit der Varianz σ2 des Rauschsignals n(t) verrechnet wird.
Zur Berücksichtigung zeitvarianter Eigenschaften muss man andere Modelle wie Rayleigh–, Rice– und Lognormal–Fading verwenden, die im Buch „Mobile Kommunikation” beschrieben werden.
Bei leitungsgebundenen Übertragungssystemen ist insbesondere der spezifische Frequenzgang des Übertragungsmediums entsprechend den Angaben in Kapitel 4.2 (Koaxialkabel) und Kapitel 4.3 (Zweidrahtleitung) des Buches „Lineare zeitinvariante Systeme” zu berücksichtigen, aber auch, dass aufgrund von Fremdstörungen (Nebensprechen, elektromagnetische Felder, usw.) nicht mehr von Weißem Rauschen ausgegangen werden kann.
Definition digitaler Kanalmodelle (1)
Ein analoges Kanalmodell zeichnet sich durch analoge Eingangs– und Ausgangsgrößen aus. Dagegen sind bei einem digitalen Kanalmodell (manchmal auch als „diskret” bezeichnet) sowohl der Eingang als auch der Ausgang zeit– und wertdiskret. Im Folgenden seien dies die Quellensymbolfolge 〈qν〉 ∈ {L, H} und die Sinkensymbolfolge 〈υν〉 ∈ {L, H}. Die Laufvariable ν kann Werte zwischen 1 und N annehmen.
Wie ein Vergleich mit dem Blockschaltbild auf der letzten Seite zeigt, ist der Digitale Kanal ein vereinfachendes Modell des analogen Übertragungskanals einschließlich der technischen Sende– und Empfangseinrichtungen. Vereinfachend deshalb, weil dieses Modell sich lediglich auf die auftretenden Übertragungsfehler bezieht, dargestellt durch die Fehlerfolge 〈eν〉 mit
\[e_{\nu} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}\upsilon_\nu \ne q_\nu \hspace{0.05cm}, \\ {\rm falls}\hspace{0.15cm} \upsilon_\nu = q_\nu \hspace{0.05cm}.\\ \end{array}\]
Während L und H die möglichen Symbole bezeichnen, die hier für Low und High stehen, ist eν ∈ {0, 1} ein reeller Zahlenwert. Oft werden die Symbole auch als qν ∈ {0, 1} und υν ∈ {0, 1}definiert. Um Verwechslungen zu vermeiden, haben wir hier die etwas ungewöhnliche Nomenklatur verwendet.
Die in der Grafik angegebene Fehlerfolge 〈eν〉
- ergibt sich durch den Vergleich der beiden Binärfolgen 〈qν〉 und 〈υν〉,
- beinhaltet nur Informationen über die Abfolge der Übertragungsfehler und damit im Allgemeinen weniger Information als ein analoges Kanalmodell,
- wird zweckmäßigerweise durch einen Zufallsprozess mit nur wenigen Parametern angenähert.
Die Fehlerfolge 〈eν〉 erlaubt Aussagen über die Fehlerstatistik, zum Beispiel ob es sich um so genannte
- statistisch unabhängige Fehler, oder
- Bündelfehler
handelt. Das folgende Beispiel soll diese beiden Fehlerarten verdeutlichen.