Aufgaben:Aufgabe 4.14Z: Offset–QPSK vs. MSK: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“)
 
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID1742__Mod_Z_4_13.png|right|]]
 +
Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK (kurz: O–QPSK), wie aus den [http://www.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren#Realisierung_der_MSK_als_Offset.E2.80.93QPSK_.281.29 Blockschaltbildern] im Theorieteil hervorgeht.
  
 +
Beim normalen O–QPSK–Betrieb werden jeweils zwei Bit der Quellensymbolfolge 〈$q_k$〉 einem Bit $a_{Iν}$ im Inphasezweig und sowie einem Bit $a_{Qν}$ im Quadraturzweig zugeordnet.
 +
 +
Die Grafik zeigt diese Seriell–Parallel–Wandlung in den drei oberen Diagrammen für die ersten vier Bit des grün gezeichneten Quellensignals. Dabei ist zu beachten:
 +
:* Die Darstellung der O–QPSK gilt für einen rechteckigen Grundimpuls. Mögliche Werte der Koeffizienten $a_{Iν}$ und $a_{Qν}$ sind ±1.
 +
:* Durchläuft der Index k der Quellensymbole die Werte 1 bis 8, so nimmt die Variable ν nur die Werte 1 ... 4 an.
 +
:* Die Skizze berücksichtigt den Zeitversatz (Offset) für den Quadraturzweig.
 +
 +
Bei der MSK–Realisierung mittels O–QPSK ist eine Umcodierung erforderlich. Hierbei gilt mit $q_k$ ∈ {+1, –1} und $a_k$ ∈ {+1, –1}:
 +
$$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.$$
 +
Beispielsweise erhält man unter der Annahme $a-0 = +1$:
 +
$$a_1 =  a_0 \cdot q_1 = +1,\hspace{0.2cm}a_2 = -a_1 \cdot q_2 = +1,$$
 +
$$a_3  =  a_2 \cdot q_3 = -1,\hspace{0.2cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$
 +
Weiter ist zu berücksichtigen:
 +
:* Die Koeffizienten $a_0 = +1$, $a_2 = +1$, $a_4 = –1$ sowie die noch zu berechnenden Koeffizienten a6 und a8 werden dem Signal $s_I(t)$ zugeordnet.
 +
:* Dagegen werden die Koeffizienten $a_1 = +1$ und $a_3 = –1$ sowie alle weiteren Koeffizienten mit ungeradem Index dem Signal sQ(t) beaufschlagt.
 +
 +
''' Hinweis:''' Die Aufgabe gehört zu [http://www.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren Kapitel 4.4]. In [http://www.lntwww.de/Aufgaben:4.13_Phasenverlauf_der_MSK Aufgabe A4.13] wird die zugehörige Phasenfunktion $ϕ(t)$ ermittelt, wobei wiederum der (auf 1 normierte) MSK–Grundimpuls zugrunde gelegt wird:
 +
$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}. \\ \end{array}$$
  
 
===Fragebogen===
 
===Fragebogen===

Version vom 6. Januar 2017, 14:51 Uhr

P ID1742 Mod Z 4 13.png

Eine Realisierungsmöglichkeit für die MSK bietet die Offset–QPSK (kurz: O–QPSK), wie aus den Blockschaltbildern im Theorieteil hervorgeht.

Beim normalen O–QPSK–Betrieb werden jeweils zwei Bit der Quellensymbolfolge 〈$q_k$〉 einem Bit $a_{Iν}$ im Inphasezweig und sowie einem Bit $a_{Qν}$ im Quadraturzweig zugeordnet.

Die Grafik zeigt diese Seriell–Parallel–Wandlung in den drei oberen Diagrammen für die ersten vier Bit des grün gezeichneten Quellensignals. Dabei ist zu beachten:

  • Die Darstellung der O–QPSK gilt für einen rechteckigen Grundimpuls. Mögliche Werte der Koeffizienten $a_{Iν}$ und $a_{Qν}$ sind ±1.
  • Durchläuft der Index k der Quellensymbole die Werte 1 bis 8, so nimmt die Variable ν nur die Werte 1 ... 4 an.
  • Die Skizze berücksichtigt den Zeitversatz (Offset) für den Quadraturzweig.

Bei der MSK–Realisierung mittels O–QPSK ist eine Umcodierung erforderlich. Hierbei gilt mit $q_k$ ∈ {+1, –1} und $a_k$ ∈ {+1, –1}: $$a_k = (-1)^{k+1} \cdot a_{k-1} \cdot q_k \hspace{0.05cm}.$$ Beispielsweise erhält man unter der Annahme $a-0 = +1$: $$a_1 = a_0 \cdot q_1 = +1,\hspace{0.2cm}a_2 = -a_1 \cdot q_2 = +1,$$ $$a_3 = a_2 \cdot q_3 = -1,\hspace{0.2cm}a_4 = -a_3 \cdot q_4 = -1 \hspace{0.05cm}.$$ Weiter ist zu berücksichtigen:

  • Die Koeffizienten $a_0 = +1$, $a_2 = +1$, $a_4 = –1$ sowie die noch zu berechnenden Koeffizienten a6 und a8 werden dem Signal $s_I(t)$ zugeordnet.
  • Dagegen werden die Koeffizienten $a_1 = +1$ und $a_3 = –1$ sowie alle weiteren Koeffizienten mit ungeradem Index dem Signal sQ(t) beaufschlagt.

Hinweis: Die Aufgabe gehört zu Kapitel 4.4. In Aufgabe A4.13 wird die zugehörige Phasenfunktion $ϕ(t)$ ermittelt, wobei wiederum der (auf 1 normierte) MSK–Grundimpuls zugrunde gelegt wird: $$g_{\rm MSK}(t) = \left\{ \begin{array}{l} \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm sonst}. \\ \end{array}$$

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.