Aufgaben:Aufgabe 1.2: Signalklassifizierung: Unterschied zwischen den Versionen
Zeile 76: | Zeile 76: | ||
$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2}s. $ | $E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2}s. $ | ||
− | Die Energie des Signals <math>x_3(t)</math> ist doppelt so groß, da nun der Zeitbereich $t < 0$ den gleichen Beitrag liefert wie der Zeitbereich $t > 0$. Also ist $E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s} | + | Die Energie des Signals <math>x_3(t)</math> ist doppelt so groß, da nun der Zeitbereich $t < 0$ den gleichen Beitrag liefert wie der Zeitbereich $t > 0$. Also ist $E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}$ ⇒ Richtig sind hier die <u>Lösungsvorschläge 2 und 3</u>. |
Beim Signal <math>x_1(t)</math> divergiert das Energieintegral: $E_1 \rightarrow \infty$. Dieses Signal weist eine endliche Leistung auf ⇒ $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$ und ist dementsprechend <u>leistungsbegrenzt</u>. Das Ergebnis berücksichtigt, dass das Signal <math>x_1(t)</math> in der Hälfte der Zeit ($t < 0$) identisch $0$ ist. | Beim Signal <math>x_1(t)</math> divergiert das Energieintegral: $E_1 \rightarrow \infty$. Dieses Signal weist eine endliche Leistung auf ⇒ $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$ und ist dementsprechend <u>leistungsbegrenzt</u>. Das Ergebnis berücksichtigt, dass das Signal <math>x_1(t)</math> in der Hälfte der Zeit ($t < 0$) identisch $0$ ist. |
Version vom 12. Januar 2017, 17:29 Uhr
Aufgabe zu Klassifizierung von Signalen
Nebenstehend sind drei Signalverläufe dargestellt:
- Das Signal \(x_1(t)\) wird genau zum Zeitpunkt $t = 0$ eingeschaltet und besitzt für $t > 0$ den Wert $1\,\text{V}$.
- Das rote Signal \(x_2(t)\) ist für $t < 0$ identisch $0$, springt bei $t = 0$ auf $1\,\text{V}$ an und fällt danach mit der Zeitkonstanten $1\,\text{ms}$ ab. Für $t > 0$ gilt:
\[x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.\]
- Entsprechend gilt für das grün dargestellte Signal für alle Zeiten $t$:
\[x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|t|}/(1\,\text{ms})}.\]
Diese drei Signale sollen nun von Ihnen nach den folgenden Kriterien klassifiziert werden:
- deterministisch bzw. stochastisch,
- kausal bzw. akausal,
- energiebegrenzt bzw. leistungsbegrenzt,
- wertkontinuierlich bzw. wertdiskret,
- zeitkontinuierlich bzw. zeitdiskret.
Hinweis: Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen zu „Aufgabe 1.2: Signalklassifizierung”
Musterlösung zu „Aufgabe 1.2: Signalklassifizierung”
- Alle Signale können in analytischer Form vollständig beschrieben werden; sie sind deshalb auch deterministisch.
- Alle Signale sind außerdem für alle Zeiten $t$ eindeutig definiert, nicht nur zu gewissen Zeitpunkten. Deshalb handelt es sich stets um zeitkontinuierliche Signale.
- Die Signalamplituden von \(x_2(t)\) und \(x_3(t)\) können alle beliebigen Werte zwischen $0$ und $1\,\text{V}$ annehmen; sie sind deshalb wertkontinuierlich.
- Dagegen sind beim Signal \(x_1(t)\) nur die zwei Signalwerte $0$ und $1\,\text{V}$ möglich, und es liegt ein wertdiskretes Signal vor.
2. Ein Signal bezeichnet man als kausal, wenn es für Zeiten $t < 0$ nicht existiert bzw. identisch $0$ ist. Dies gilt für die beiden ersten Signale \(x_1(t)\) und \(x_2(t)\). Dagegen gehört \(x_3(t)\) zur Klasse der akausalen Signale.
3. Nach der allgemeinen Definition gilt\[E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.\]
Im vorliegenden Fall ist die untere Integrationsgrenze $0$ und es kann auf die Grenzwertbildung verzichtet werden. Man erhält\[E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}. \]
Bei endlicher Energie ist die zugehörige Leistung stets verschwindend klein. Daraus folgt $P_2 = 0$.
4. Wie bereits in der letzten Teilaufgabe berechnet wurde, besitzt \(x_2(t)\) eine endliche Energie: $E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2}s. $
Die Energie des Signals \(x_3(t)\) ist doppelt so groß, da nun der Zeitbereich $t < 0$ den gleichen Beitrag liefert wie der Zeitbereich $t > 0$. Also ist $E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}$ ⇒ Richtig sind hier die Lösungsvorschläge 2 und 3.
Beim Signal \(x_1(t)\) divergiert das Energieintegral: $E_1 \rightarrow \infty$. Dieses Signal weist eine endliche Leistung auf ⇒ $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$ und ist dementsprechend leistungsbegrenzt. Das Ergebnis berücksichtigt, dass das Signal \(x_1(t)\) in der Hälfte der Zeit ($t < 0$) identisch $0$ ist.