Aufgabe 1.6: Rechteckförmige Impulsantwort
Wir betrachten im Folgenden die in der Grafik gezeigte Konstellation. Der Frequenzgang $H(f) = H_1(f) · H_2(f)$ im unteren Zweig ist durch die Impulsantworten seiner beiden Teilkomponenten festgelegt. Hierbei ist $h_1(t)$ im Bereich von $-1\ \rm ms$ bis $+1\ \rm ms$ konstant gleich $k$ und außerhalb $0$; an den Bereichsgrenzen gilt jeweils der halbe Wert. Die im Bild eingezeichnete Zeitvariable ist somit $Δt = 2 \ \rm ms$.
Die Impulsantwort der zweiten Systemfunktion $H_2(f)$ lautet: $$h_2(t) = \delta(t - \tau).$$ Der Frequenzgang zwischen den Signalen $x(t)$ und $z(t)$ hat Hochpass–Charakter und lautet allgemein: $$H_{\rm HP}(f) = 1 - H_1(f) \cdot {\rm e}^{-{\rm j2 \pi}f \tau}.$$ Für die Teilaufgaben (1) bis (4) gelte $τ = 0$ ⇒ $H(f) = H_1(f)$. Mit $τ = 0$ kann hierfür aber auch geschrieben werden ( $Δt = 2 \ \rm ms$): $$H_{\rm HP}(f) = 1 - {\rm si}( \pi \cdot {\rm \Delta}t \cdot f).$$ Ohne Auswirkung auf die Lösung der Aufgabe ist anzumerken, dass diese Gleichung für $τ ≠ 0$ nicht anwendbar ist: $$|H_{\rm HP}(f)|\hspace{0.09cm} \ne \hspace{0.09cm}1 - |H_1(f)| .$$
Hinweise:
- Die Aufgabe gehört bezieht sich auf die Seite Spalttiefpass.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Das Ausgangssignal $y(t)$ ergibt sich als das Faltungsprodukt von $x(t)$ und $h(t)$. Die Faltung zweier gleich breiter Rechtecke ergibt ein Dreieck mit dem Maximum bei $t = 0$: $$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau = 1\hspace{0.05cm}{\rm V}\cdot \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$ Richtig sind somit die Lösungsvorschläge 2 und 4.
(3) Die Faltung von zwei unterschiedlich breiten Rechtecken führt zu einem trapezförmigen Ausgangssignal entsprechend der Skizze. Der Maximalwert tritt im konstanten Bereich von $–0.5 \ \rm ms$ bis $+0.5 \ \rm ms$ auf und beträgt $$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot \frac{1}{2\,{\rm ms}} \hspace{0.05cm}\cdot 1\,{\rm ms} = 0.5\hspace{0.05cm}{\rm V}.$$ Richtig ist somit nur die dritte Alternative}.
(4) Die Impulsantwort des Gesamtsystems lautet: $h_{\rm HP}(t) = \delta(t) - h(t).$ Diese beiden Anteile sind in der Skizze dargestellt.
- Durch Integration über $h_{\rm HP}(t)$ und Multiplikation mit $1 \ \rm V$ kommt man zum gesuchten Signal $z(t)$. In der unteren Skizze sind dargestellt:
- das Integral über $δ(t)$ blau,
- die Funktion $–σ(t)$ rot, und
- das gesamte Signal $z(t)$ grün.
$z(t)$ ist eine ungerade Funktion in $t$ mit einer Sprungstelle bei $t = 0$: Der Signalwert bei $t = 0$ liegt genau in der Mitte zwischen dem links- und dem rechteckseitigem Grenzwert und ist somit 0. Für $t > 1 \ \rm ms$ gilt ebenfalls $z(t) = 0$, da das Gesamtsystem eine Hochpass-Charakteristik aufweist.
Richtig sind somit die Lösungsvorschläge 2, 3 und 4.
(5) Die Grafik zeigt die resultierende Impulsantwort $h_{\rm HP}(t)$ und die Sprungantwort $σ_{\rm HP}(t)$, die bei $t = 0$ auf $1$ springt und bis zum Zeitpunkt $t = 2 \ \rm ms$ auf den Endwert 0 abklingt. Zum Zeitpunkt $t = 1\ \rm ms$ ergibt sich $σ_{\rm HP}(t) = 0.5$.
Das Signal $z(t)$ ist formgleich mit der Sprungantwort $σ_{\rm HP}(t)$, ist jedoch noch mit $1 \ \rm V$ zu multiplizieren. Der gesuchte Signalwert zur Zeit $t_1 = 1 \ \rm ms$ ergibt sich zu $z(t_1) \; \rm \underline{ = \ 0.5}$.