Aufgabe 4.6: AWGN–Kanalkapazität
Wir gehen vom AWGN-Kanalmodell aus:
- X kennzeichnet den Eingang (Sender).
- N steht für eine gaußverteilte Störung.
- Y = X + N beschreibt den Ausgang (Empfänger) bei additiver Störung.
Für die Wahrscheinlichkeitsdichtefunktion der Störung gelte: $$f_N(n) = \frac{1}{\sqrt{2\pi \sigma_N^2}} \cdot {\rm exp}\left [ - \hspace{0.05cm}\frac{n^2}{2 \sigma_N^2} \right ] \hspace{0.05cm}.$$ Da die Zufallsgröße N mittelwertfrei ist ⇒ mN = 0, kann man die Varianz σN2 mit der Leistung PN gleichsetzen. In diesem Fall ist die differentielle Entropie der Zufallsgröße N wie folgt angebbar (mit Pseudo–Einheit „bit”): $$h(N) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 2\pi {\rm e} \cdot P_N \right )\hspace{0.05cm}.$$ In dieser Aufgabe wird PN = 1 mW vorgegeben. Dabei ist zu beachten:
- Die Leistung PN in obiger Gleichung muss wie die Varianz σN2 dimensionslos sein.
- Um mit dieser Gleichung arbeiten zu können, muss die physikalische Größe PN geeignet normiert werden, zum Beispiel entsprechend PN = 1 mW ⇒ P'N = 1.
- Bei anderer Normierung, beispielsweise PN = 1 mW ⇒ P'N = 0.001 ergäbe sich für h(N) ein völlig anderer Zahlenwert.
Weiter können Sie bei der Lösung dieser Aufgabe berücksichtigen:
- Die Kanalkapazität ist definiert als die maximale Transinformation zwischen Eingang X und Ausgang Y bei bestmöglicher Eingangsverteilung:
$$C = \max_{\hspace{-0.15cm}f_X:\hspace{0.05cm} {\rm E}[X^2] \le P_X} \hspace{-0.2cm} I(X;Y) \hspace{0.05cm}.$$
- Die Kanalkapazität des AWGN–Kanals lautet:
$$C_{\rm AWGN} = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right ) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P\hspace{0.05cm}'_{\hspace{-0.05cm}X}}{P\hspace{0.05cm}'_{\hspace{-0.05cm}N}} \right )\hspace{0.05cm}.$$ Daraus ist ersichtlich, dass die die Kanalkapazität C und auch die Transinformation I(X; Y) im Gegensatz zu den differentiellen Entropien unabhängig von obiger Normierung ist.
- Bei gaußförmiger Stör–WDF fN(n) führt eine ebenfalls gaußförmige Eingangs–WDF fX(x) zur maximalen Transinformation und damit zur Kanalkapazität.
Hinweis: Die Aufgabe gehört zum Themengebiet von Kapitel 4.2.
Fragebogen
Musterlösung
- Für PX < 15 mW wird die Transinformation I(X; Y) stets kleiner als 2 bit sein, unabhängig von allen anderen Gegebenheiten.
- Mit PX = 15 mW ist die maximale Transinformation I(X; Y) = 2 bit nur erreichbar, wenn die Eingangsgröße X gaußverteilt ist. Die Ausgangsgröße Y ist dann ebenfalls gaußverteilt.
- Weist die Zufallsgröße X einen Gleichanteil mX auf, so ist die Varianz σX2 = PX – mX2 bei gegebenem PX kleiner, und es gilt I(X;Y) = 1/2 · log2 (1 + σX2/PN) < 2 bit.
- Voraussetzung für die gegebene Kanalkapazitätsgleichung ist, dass X und N unkorreliert sind. Wären dagegen die Zufallsgrößen X und Y unkorreliert, so ergäbe sich I(X; Y) = 0.
c) Die angegebene Gleichung für die differentielle Entropie macht nur bei dimensionsloser Leistung Sinn. Mit der vorgeschlagenen Normierung erhält man: 4. 5. 6. 7.