Aufgabe 4.8: Numerische Auswertung der AWGN-Kanalkapazität
Für die Kanalkapazität C des AWGN–Kanals als obere Schranke für die Coderate R bei Digitalsignalübertragung gibt es zwei verschiedene Gleichungen :
Kanalkapazität C in Abhängigkeit von ES/N0: $$C( E_{\rm S}/{N_0}) = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0}) .$$ Hierbei sind folgende Abkürzungen verwendet:
- ES: die Energie pro Symbol des Digitalsignals,
- N0: die AWGN–Rauschleistungsdichte.
Kanalkapazität C in Abhängigkeit von EB/N0: $$C( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) .$$
Berücksichtigt ist der Zusammenhang ES = R · EB, wobei R die Coderate der bestmöglichen Kanalcodierung angibt. Eine fehlerfreie Übertragung (unter Berücksichtigung dieses optimalen Codes) ist für das gegebene EB/N0 möglich, so lange R ≤ C gilt ⇒ Kanalcodierungstheorem von Shannon.'
Durch die Tabelle vorgegeben ist der Kurvenverlauf C(ES/N0). Im Mittelpunkt dieser Aufgabe steht die numerische Auswertung der zweiten Gleichung. Hinweis
- Die Aufgabe gehört zum Themengebiet von Kapitel 4.3.
Fragebogen
Musterlösung
(2) Über einen Kanal mit der Kanalkapazität C ist eine fehlerfreie Übertragung möglich, solange die Coderate R ≤ C ist. Die absolute Grenze ergibt sich im Grenzfall C = R = 0. Oder präziser ausgedrückt: für ein beliebig kleines positives ε: C = R = ε mit ε → 0.
Mit dem Ergebnis der Teilaufgabe (a) lautet die Bestimmungsgleichung: $${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{R \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{2R} - 1} { 2 R} \hspace{0.05cm}. $$ Da hier der Quotient im Grenzübergang R → 0 das Ergebnis „0 geteilt durch 0” liefert, ist hier die l'Hospitalsche Regel anzuwenden: Man differenziert Zähler und Nenner, bildet den Quotienten und setzt schließlich R = 0 ein. Mit x = 2R lautet das Ergebnis: $${\rm Min}\hspace{0.1cm}[E_{\rm B}/{N_0}] = \lim\limits_{x \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{2^{x} - 1} { x} = \frac{{\rm ln}\hspace{0.1cm} (2) \cdot 2^{x} } { 1} \hspace{0.05cm}\bigg |_{x=0} = {\rm ln}\hspace{0.1cm} (2) \hspace{0.15cm}\underline{= 0.693} \hspace{0.05cm}.$$
(3) In logarithmierter Form erhält man: $${\rm Min}\hspace{0.1cm}[10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})] = 10\cdot {\rm lg} \hspace{0.1cm}(0.693) \hspace{0.15cm}\underline{= -1.59\,{\rm dB}} \hspace{0.05cm}. $$
(4) Der Abszissenwert lautet somit in nichtlogarithmierter Form: EB/N0 = 1. Daraus folgt mit C = R: $$\frac{2^{2C} - 1} { 2 C} \stackrel{!}{=} 1 \hspace{0.3cm}\Rightarrow\hspace{0.3cm}\underline{C = 0.5} \hspace{0.05cm}. $$
(5) Für R = 1 ist EB = ES. Deshalb gilt: $$ C(E_{\rm B}/{N_0}) = 1 \hspace{0.3cm}\Longleftrightarrow \hspace{0.3cm} C(E_{\rm S}/{N_0}) = 1 \hspace{0.05cm}.$$ Aus der Tabelle auf der Angabenseite ist abzulesen: $$ C(E_{\rm S}/{N_0}) = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm S}/{N_0} = 1.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{E_{\rm B}/{N_0} = 1.5}\hspace{0.05cm}.$$ Der dazugehörige dB–Wert ist 10 · lg (EB/N0) = 1.76 dB.
Zum gleichen Ergebnis kommt man mit R = 1 über die Gleichung $$E_{\rm B}/{N_0} = \frac{2^{2R} - 1} { 2 \cdot R} = \frac{4 - 1} { 2 } = 1.5 \hspace{0.05cm}.$$ (6) Richtig ist der Lösungsvorschlag 2, wie an einem Beispiel gezeigt werden soll.
- Gesucht ist die Kanalkapazität C für 10 · lg (EB/N0) = 15 dB ⇒ EB/N0 = 31.62. Dann gilt entsprechend dem Lösungsvorschlag 1 mit x = 2C:
$$31.62 = \frac{2^{x} - 1} { x} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 31.62 \cdot x = 2^{x} - 1 \hspace{0.05cm}. $$
Die Lösung x = 7.986 ⇒ C = 3.993 (bit/use) kann nur grafisch oder iterativ gefunden werden.
- Gesucht ist der notwendige Abszissenwert 10 · lg (EB/N0) für die Kapazität C = 4 bit/Symbol:
$$E_{\rm B}/{N_0} = \frac{2^{2C} - 1} { 2 \cdot C} = \frac{2^8 - 1} { 8 } = 31.875 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10\cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) = 15.03\,{\rm dB} \hspace{0.05cm}.$$ 4. 5. 6. 7.