Aufgabe 1.6: Wurzel-Nyquist-System
Aus LNTwww
Version vom 5. November 2017, 22:46 Uhr von Mohamed (Diskussion | Beiträge)
Die nebenstehende Grafik zeigt
- das Spektrum $G_{s}(f)$ des Sendegrundimpulses,
- den Frequenzgang $H_{\rm E}(f)$ des Empfangsfilters
eines binären und bipolaren Übertragungssystems, die zueinander formgleich sind:
- $$G_s(f) = \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm sonst }\hspace{0.05cm}, \\ \end{array}$$
- $$H_{\rm E }(f) = \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm sonst }\hspace{0.05cm}. \\ \end{array}$$
In der gesamten Aufgabe gelte $A = 10^{–6} \ \rm V/Hz$ und $f_{2} = 1 \ \rm MHz$.
Unter der Voraussetzung, dass die Bitrate $R = 1/T$ richtig gewählt wird, erfüllt der Detektionsgrundimpuls $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$ das erste Nyquistkriterium. Bei der dazugehörigen Spektralfunktion $G_{d}(f)$ erfolgt dabei der Flankenabfall cosinusförmig ähnlich einem Cosinus–Rolloff–Spektrum; der Rolloff–Faktor $r$ ist in dieser Aufgabe zu ermitteln.
Hinweis:
- Die Aufgabe bezieht sich auf das Optimierung der Basisbandübertragungssystemedieses Buches. Zahlenwerte der Q–Funktion liefert zum Beispiel das folgende Interaktionsmodul: Komplementäre Gaußsche Fehlerfunktionen
- Der Crestfaktor ist der Qotient aus Maximalwert und Effektivwert des Sendesignals und damit ein Maß für die sendeseitigen Impulsinterferenzen:
- $$C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= {s_0}/{s_{\rm eff}}.$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)
(6)