Aufgabe 4.08Z: Fehlerwahrscheinlichkeit bei drei Symbolen
Aus LNTwww
Version vom 7. November 2017, 18:28 Uhr von Hussain (Diskussion | Beiträge)
Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der Aufgabe A4.8:
- die $M = 3$ möglichen Sendesignale, nämlich
- $$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
- die $M = 3$ Entscheidungsgrenzen
- $$G_{01}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
- $$ G_{02}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
- $$ G_{12}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$
Die beiden Achsen des 2D–Signalraums sind hier vereinfachend mit $x$ und $y$ bezeichnet; eigentlich müsste hierfür $\varphi_1(t)/E^{\rm 1/2}$ bzw. $\varphi_2(t)/E^{\rm 1/2}$ geschrieben werden.
Diese Entscheidungsgrenzen sind optimal unter den Voraussetzungen
- gleichwahrscheinliche Symbolwahrscheinlichkeiten
- zirkulär–symmetrische WDF des Rauschens (z.B. AWGN).
In dieser Aufgabe betrachten wir dagegen für die Rausch–WDF eine zweidimensionale Gleichverteilung:
- $$\boldsymbol{ p }_{\boldsymbol{ n }} (x,\hspace{0.15cm} y) = \left\{ \begin{array}{c} K\\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm f\ddot{u}r} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}.\\ \end{array}$$
Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.
Hinweis:
- Die Aufgabe gehört zum Themenkomplex des Kapitels Approximation der Fehlerwahrscheinlichkeit.
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)